Отличие коробки автомат от вариатора и робота: Выбор коробки передач. Что лучше, механика, автомат, вариатор или робот? / Полезные статьи / Атлант М

Выбор коробки передач. Что лучше, механика, автомат, вариатор или робот? / Полезные статьи / Атлант М

Механическую коробку передач выбрать, или автоматическую? А если автоматическую, то обычный автомат, «робот», или вариатор? Такие вопросы очень популярны в среде автолюбителей при выборе будь-то нового, будь-то подержанного автомобиля. Интернет заполнен на тему коробок передач, причем как полезной информацией, так и информационным «хламом». Отличить полезное от хлама может только профессионал в теме. Такой у него, у Интернета, недостаток. Поэтому я решил написать немножко строк про все эти механики, автоматы, роботы и вариаторы, причем, не погружаясь «в гайки», чтобы любой читатель, вне зависимости от уровня технической грамотности, смог понять, о чем идет речь, и что ему, ЛИЧНО, будет лучше.

Механическая коробка передач

Начнем с «механики». В случае механической коробки передач, под капотом имеем двигатель, «черный ящик» коробки, со всеми её валами, шестеренками, синхронизаторами и включающими муфтами. А между двигателем и коробкой узел сцепления. На педаль сцепления нажали – двигатель и коробку полностью разъединили. Пока вы удерживаете педаль сцепления нажатой, силовой агрегат и коробка передач ничем не связаны и вы можете включить любую передачу, исходя из условий движения. Вот это и является основным плюсом «механики», особенно для «продвинутого» водителя, который знает и умеет применять приемы активного управления автомобилем. Например, в случае переднеприводного авто, «упереться» двигателем в колеса передней оси перед маневром. А в случае заднего привода, «довинтить» машину в вираж, перейти на более крутую траекторию. Но как часто случается, недостатки являются продолжением достоинств. Активно «драйвануть», конечно, это приятно, а вот орудовать педалью сцепления и рычагом переключения в бесконечных пробках мегаполисов – не самое приятное занятие. Вот это и есть минус.


Гидромеханическая автоматическая коробка передач, или «обычный автомат»

Чтобы не управлять коробкой «врукопашную», и не особо напрягаться ручками-ножками в плотном городском потоке, и придумана автоматическая коробка передач. Сначала появилась гидромеханическая АКП (автоматическая коробка передач). Для того, чтобы понять, как она работает, нужен… вентилятор (обычный, бытовой) и какая-нибудь детская вертушка-игрушка с винтом-пропеллером, похожим на вентиляторный. Включите вентилятор и поднесите к нему эту игрушку. Что произойдет? Пропеллер на игрушке тоже будет крутиться! Теперь представьте, что винт приводит в движение не электромотор вентилятора, а двигатель автомобиля. А второй винт находится на валу, уходящем в «черный ящик» с шестеренками, муфтами, и всем прочим. Оба этих винта заключены в герметичный корпус, заполненный специальной трансмиссионной жидкостью, который называется гидротрансформатором.

Для чего эти страсти? А для того, чтобы плавно трогаться, как можно плавнее переключать передачи безо всякого сцепления «от ноги» водителя, как в «механике» между двигателем и «черным ящиком» с шестеренками. Ведь для того, чтобы тронуться, нужно плавненько соединить мотор и «черный ящик» коробки. Вот гидротрансформатор, совершенно не теряя усилий от двигателя, это и делает. А жидкость нужна для того, чтобы через нее передавать вращательное движение. А то воздух, он не справится. Плотность воздуха мала для передачи энергии на таких скоростях вращения. Что же касается переключений передач, то они выполняются по команде блока управления, автоматически, в зависимости от условий движения. Раньше эти блоки были гидравлические, сейчас электронные.

В общем, всё в гидромеханической АКП, вроде, хорошо. Сама едет, сама переключается. Водителю остается только жать педали «газа» и тормоза, да селектор «автомата» щелкать между «Паркинг», «Драйв» и «Назад». Причем работает эта штука вполне надежно. Если не изображать из себя Шумахера на АКП, и соблюдать Регламент ТО, то и не ломается.

Но недостатки есть. Главные среди них – ощутимые моменты автоматических переключений диапазонов АКП в «черном ящике» с шестеренками, и более высокое потребление горючего, в сравнении с «механикой» при одинаковых силовых агрегатах. Потребность в большем комфорте, возраставшие цены на топливо и забота об экологии стимулировали инженеров подумать на тему автоматизации ещё раз.


«Вариатор». Вариаторная АКП

Чтобы понять, до чего додумались инженеры, представьте… велосипед. Педали, две звездочки, а между ними – цепь. На заднем колесе чуть более продвинутых моделей есть несколько звездочек, чтобы можно было передачи переключать. Переключил на большую звездочку – крутить педали легче и можно ехать в крутую горку, только чаще крутить педали приходится. Скорость велосипеда при этом падает, но это плата за высокую тягу. А если ехать по ровной местности, или с горы, то включил звездочку сзади поменьше – крутишь педали реже, а скорость велосипеда растет. Теперь представьте, что на велосипеде вместо цепной передачи стоит ременная. То есть, вместо цепи – ремень, вместо звездочек — шкивы, только вместо кучи звездочек на заднем колесе – ОДИН шкив, но его диаметр может… плавно изменяться.

Представили? Вот, перед вами, вариаторная автоматическая коробка передач! Один шкив – постоянного размера, второй – переменного и его диаметр меняется по команде блока управления, подстраиваясь под условия движения. А между ними – прочнейший «ремень», представляющий собой или многозвенную цепь, или составной, из металлических пластин. Плавное изменение диаметра одного из этих шкивов приводит к тому, что моменты переключений АКП не ощущаются вовсе. Ведь их попросту нет, этих моментов переключений. J Изумительно комфортная штука в работе, этот вариатор! Но и в нем не обошлось без недостатков, существенных и помельче.

«Вариаторы» недёшевы. Также они категорически не любят пробуксовок. Из-за того, что между «черным ящиком» со шкивами и ремнем приходится ставить все тот же гидротрансформатор (трогаться-то нужно!), а также из-за механического трения в «черном ящике», потери энергии достаточно велики, расход топлива, в с сравнении с «обычной» АКП, немногим меньше. А может быть и больше. А еще приходится с программами двигателя «поколдовать», чтобы он не гудел, как троллейбус на постоянных оборотах при разгонах. Ведь ступенчатого переключения передач – нет. Поэтому инженерам опять открылся простор для изысканий.

«Роботы». Роботизированные коробки передач

Чтобы преодолеть недостатки гидромеханических и вариаторных АКП, несколько конструкторских школ обратили свое внимание на… обычную механическую коробку. А что если заменить ножной привод сцепления электроприводом, рычаг переключения передач и тяги к «черному ящику» с шестеренками электрическими исполнительными механизмами, и управлять сцеплением и переключениями с помощью электронного блока, исходя из условий движения? Конечно, легко и скоро только сказка сказывается. Над программами управления для этого блока и надежностью электропривода инженерам пришлось крепко повозиться, но автоматизированные механические коробки передач, которые журналисты окрестили «роботизированными», или «роботами», пошли в серийное производство для автомобилей малых классов. Они представляют собой именно классическую «механику», в которой управление сцеплением и переключениями передач осуществляется электронным блоком.

Главное достоинство большинства «роботов» — высокая топливная экономичность, для чего они, прежде всего и создавались. Ведь компьютер с совершенной программой управления никогда не ошибается, никогда не сердится, не впадает в депрессию и никогда не устает, в отличие от водителей с разным опытом, мастерством и стойкостью к физическим и моральным нагрузкам. Поэтому автомобиль с «роботом» расходует меньше топлива, чем такое же авто с любой другой коробкой, включая «механику». А ещё такой «робот» дешевле любой другой АКП в покупке, при заказе нового авто. Вот так.

Но и тут без недостатков не обходится. Как ни старались инженеры оптимизировать моменты переключений, «клевки» автомобиля носом при буйных разгонах весьма ощутимы. Такие «роботы» для экономичной и спокойной езды, а не для «шумахера». Еще они не любят пробуксовок в агрегатах сцепления. Пришлось инженерам опять поднапрячься.

«Роботы» класса DSG от Volkswagen

Представьте себе автомобиль с шестиступенчатой механической коробкой передач. Представили? Только коробка эта не совсем обычна. Точнее, совсем не обычна. Она как бы состоит из ДВУХ агрегатов, причем 1-я, 3-я и 5-я передачи связаны с двигателем через один модуль сцепления, а 2-я, 4-я и 6-я – через другой. Получается что-то вроде «два в одном». А теперь представьте, что все управление – полностью автоматическое, электронное и электрическое. Причем, когда вы разгоняетесь, например, на 2-й передаче, блок управления УЖЕ ВКЛЮЧИЛ 3-ю, и только выжидает наилучший момент чтобы сделать моментальный «клац-клац» независимыми сцеплениями, чтобы «отпустить» вторую передачу и «врубить» заранее подготовленную 3-ю. Переключения в такой АКП занимают не просто доли секунды, а миллисекунды! Водитель и пассажиры этих переключений просто не замечают, и разгон плавен, и очень быстр. Например, в DSG, которую первым в мире поставил на конвейер концерн VOLKSWAGEN, моменты переключений занимают 7 миллисекунд. Это гораздо быстрее, чем вы мигаете глазами. Поэтому никаких рывков и толчков, как у «роботов» описанных выше, нет.

ГАРАНТИЯ НА DSG 7 SPEED увеличена до 5 лет или 150 000 км пробега:

Концерн VOLKSWAGEN AG, идя на встречу пожеланиям клиентов, с целью сохранения уверенности покупателей в автомобилях концерна, осуществляет за счет завода изготовителя бесплатный ремонт или замену узлов коробки передач DSG 7 DQ 200 в срок до 5 лет или до достижения 150 000 км пробега с момента передачи автомобиля первому покупателю. При обращении владельца автомобиля к официальным дилерам с претензией по работе DSG 7 DQ 200 бесплатно будут проводиться диагностика и при необходимости бесплатный ремонт в соответствии с актуальными техническими рекомендациями концерна.

Точно так же такие «роботизированные» коробки переключаются не только «вверх», но и вниз. Блок управления коробкой внимательно «наблюдает» за действиями водителя с помощью датчиков на педалях и рулевом механизме, и заранее подготавливает наилучшую передачу для целей водителя.

Если я скажу, что такие «роботы» класса VW DSG работают блестяще, то это не будет преувеличением, причем не только с точки зрения переключений передач. Их блоки управления тоже не «устают» и не «ошибаются», поэтому потребление топлива у автомобиля с DSG, особенно в городском цикле, меньше, чем с любой другой коробкой, включая «механику».

Что же касается недостатков, то их мало, но они, увы, есть: Высокая стоимость и неприемлемость пробуксовок в агрегатах сцепления (впрочем, какое сцепление это любит?).

Резюме:

Как видите, однозначно сказать, что лучше, и что хуже, нельзя. Каждому свое!





 механика» или «робот»

Если вы активный драйвер, понимаете толк в скоростном и маневренном управлении автомобилями

традиционная

гидромеханическая АКП

Если вы выбираете внедорожник, хотите комфорта в городе, но и за город выбираетесь, причем, не только на шоссе

простой «робот»

Если вы спокойный водитель, ездите по городу, выбираете малый автомобиль и экономичность для вас очень важна – то более простой «робот» вас вполне устроит
«Вариатор»этот тип коробки будет хорош для поклонников предельной плавности хода

 Вот такие варианты.

С Уважением, Денис Козлов (ДОК)
Ваш эксперт в выборе и обслуживании автомобиля

Автомат? Робот? Вариатор? — 5 плюсов и 5 минусов каждого — журнал За рулем

Автоматические трансмиссии разных типов отличаются не столько долговечностью, сколько особенностями работы.

Сегодня уже практически каждая модель на авторынке оснащается автоматической трансмиссией — классическим гидромеханическим автоматом, вариатором или роботизированной коробкой. Особенности каждого из агрегатов рассмотрели эксперты «За рулем».

Гидромеханический автомат

Материалы по теме

Гидромеханический автомат — самый распространенный ввиду своей универсальности тип автоматических коробок. Ресурс у АКП самый разный: от 120 тысяч до 250 тысяч километров.

Главной же особенностью автомата является его выносливость: он может не только передавать большой крутящий момент мощного двигателя на колеса, но и пригоден для езды по бездорожью. Сегодня для легковых автомобилей выпускаются не только 4-ступенчатые автоматы, но и 6-ступенчатые, и даже 10-ступенчатые. Чем больше ступеней, тем миниатюрнее механизм и тем меньше у него запас прочности.

Плюсы:

Минусы:

  • доведенная до совершенства конструкция
  • возможность переключения передач в ручном режиме
  • отсутствие боязни пробуксовок
  • большой срок службы у большинства агрегатов
  • умение адаптироваться под стиль езды водителя
  • невысокий КПД и потеря части мощности двигателя
  • повышенный расход топлива
  • зависания разной продолжительности при переключениях
  • большой вес агрегата
  • потеря запаса прочности при большем количестве ступеней

Вариатор

Вариатор отличается плавностью работы — передач здесь нет, а крутящий момент передается через ремень, скользящий по конусам и меняющий соотношение их оборотов. Ресурс вариаторов сопоставим с ресурсом гидромеханических автоматов. Но вариаторы не любят бездорожья и пробуксовок, перегреваются и быстрее выходят из строя. При этом в городе такая коробка незаменима именно благодаря плавности работы из-за отсутствия переключений.

Плюсы:

Минусы:

  • плавная работа
  • двигатель всегда находится на оптимальных оборотах
  • простота конструкции и ремонта
  • невысокая стоимость агрегата по сравнению с классическим автоматом
  • большой ресурс ремня (у некоторых вариаторов до 500 тысяч километров)
  • шумность при разгонах (двигатель сразу выводится на максимальные обороты)
  • скучное ускорение
  • боязнь пробуксовок, бездорожья и долгих поездок на высоких скоростях
  • частые замены масла
  • высокая стоимость ремонта

Роботизированная коробка передач

Роботы бывают двух типов — с одним сцеплением и с двумя. По сути, это механические коробки, сцеплением и переключениями в которых управляют автоматика и электроника. Робот с одним сцеплением медлителен, а при переключениях автомобиль с ним «клюет носом», если водитель не успевает приотпустить в этот момент педаль газа. Вопреки ожиданиям, некоторые роботы с одним сцеплением не очень надежны. Зато дешевы.

Плюсы:

Минусы:

  • достаточно надежный агрегат
  • ремонтировать и обслуживать так же просто, как и механические коробки
  • в теории ресурс сцепления на 40% больше (в зависимости от условий эксплуатации)
  • небольшое количество заливаемого масла
  • низкая стоимость самой коробки и, в случае необходимости, ее замены
  • автомобиль, стоя на подъеме, может откатываться — не рекомендуется убирать ногу с педали тормоза, если не собираешься сразу нажимать на педаль газа
  • замедленные реакции подойдут только неторопливому водителю
  • клевки при переключениях
  • возможно размыкание сцепления в случае перегрева и переход коробки в аварийный режим

Робот с двумя сцеплениями гораздо расторопнее — он всегда держит следующую передачу наготове, из-за чего переключения происходят моментально и незаметно. Есть варианты с мокрым или менее надежным сухим сцеплением. Главная особенность всех роботов — они не любят езду по городу с частыми остановками в пробках и на светофорах.

Плюсы:

Минусы:

  • молниеносные незаметные переключения
  • отсутствие потерь мощности
  • экономия топлива
  • малый вес агрегата и компактные размеры
  • распространенность трансмиссии
  • высокая стоимость коробки и ее обслуживания
  • спорная надежность из-за сложности агрегата
  • дерганое поведение в пробках
  • малый ресурс сухого сцепления
  • откат автомобиля на наклонной поверхности

Подробности детального сравнения с указанием степени надежности различных коробок, устанавливаемых на популярные в России автомобили Hyundai/Kia, Renault, Nissan, Subaru и Аudi, а также Volkswagen и Lada, — в июньском выпуске журнала «За рулем» (уже в продаже).

  • О заблуждениях относительно вариаторов и об их реальном недостатке читайте здесь.
  • Продлить срок службы любого механизма помогут современные присадки в ГСМ.

Вариатор, робот или обычный автомат — что выбрать? — журнал За рулем

Общие соображения насчет плюсов и минусов «ручки» и автомата мы недавно высказывали. Однако тут же пообещали продолжить тему: ведь автоматы не ограничиваются одной только гидромеханикой. Разбираемся в роботах, вариаторах и прочих DSG.

Впервые столкнулся с этим типом коробки передач, взяв в середине нулевых в аренду в Италии Fiat Grande Punto с 90-сильным турбодизелем и однодисковым роботом.

На таком склоне «фиатик» подарил мне несколько седых волос.

На таком склоне «фиатик» подарил мне несколько седых волос.

Материалы по теме

Машина один раз настолько быстро предательски покатилась назад, что едва не повредила стену замка, стоявшего там с XIV века. Из других воспоминаний — безобразный разгон, неадекватное поведение в пробках. Редакционные Веста и Иксрей с АМТ также показали себя не с лучшей стороны во время поездок по городу. Дерганые и неприятные в управлении машины. Да и ресурс сцепления, по словам коллеги, постоянно ездящего на Весте, оказался весьма невысок.

Короче, мое мнение: однодисковый робот — ни за что. Лучше танцевать джигу на педалях служебного Ларгуса с механической коробкой передач в диких московских пробках, когда десяток километров порой продираешься час, чем такие автоматы.

Робот с двумя сцеплениями

Примеры использования: некоторые модели Mercedes-Benz, BMW, Mini, Ford, большинство автомобилей концерна Volkswagen, включая Audi, Skoda, Seat.

Суть идеи состоит в том, что за четные и нечетные передачи отвечают отдельные первичные валы и, соответственно, отдельные диски сцепления. Если вы движетесь на первой передаче, то второй вал уже вращается на второй! За счет этого переключение происходит очень быстро — за миллисекунды. Человек на такую проворность неспособен. При этом никакие рывки во время смены передач практически не ощущаются. Используются как «мокрые» диски сцепления, работающие в масле, — тогда это шестиступенчатая коробка DSG 6, так и «сухие» — 7-ступенчатая DSG. Ресурс «сухих» сцеплений весьма ограничен и практически никогда не достигает 100 000 км пробега, а при агрессивной езде не превышает порой 30 000 км.

Коробка DSG с «мокрым сцеплением» для автомобилей с поперечным расположением двигателя.

Коробка DSG с «мокрым сцеплением» для автомобилей с поперечным расположением двигателя.

Достоинства

Недостатки

  • Быстрые, незаметные переключение
  • Хорошая динамика разгона
  • Экономичность
  • Удорожание конструкции
  • Недостаточная надежность блоков управления
  • Недостаточный ресурс «сухих» сцеплений

Шкода с роботизированной коробкой передач DSG.

Мечта на протяжении первых 30–80 тысяч километров пробега.

Шкода с роботизированной коробкой передач DSG. Мечта на протяжении первых 30–80 тысяч километров пробега.

Личные впечатления ограничиваются поездками на автомобилях, которые нашему издательству предоставляют для испытаний российские представительства различных марок. Машины эти практически новые, с небольшими пробегами, на которых характерные проблемы двухдисковых роботов еще не успели проявиться. Все выглядит отлично: быстро, мощно, тихо — одни плюсы. Если же выбирать автомобиль для личного пользования, а пробег предстоит накатывать большой, то лучше предпочесть в качестве коробки передач традиционный гидромеханический автомат или старую добрую механику.

Вариаторы

Кайф от такой коробки состоит в том, что привычных ступенчатых переключений здесь нет в принципе! На входном и выходном валах закреплены конусообразные диски, образующие в сумме эдакий шкив с изменяемым диаметром. Валы соединяет передача — клиноременная, цепная и т. п. Смещая конусы друг относительно друга, можно плавно изменять передаточное число. Игрушка — не из дешевых. Для работы требуется особая трансмиссионная жидкость, уровень которой нужно тщательно контролировать.

Разновидностей вариаторов довольно много — ниже перечислены основные.

Вариатор клиноременный

Примеры использования: Nissan Qashqai, Nissan X-Trаil, Renault Kaptur, Mitsubishi Outlander и др.

Бесступенчатые коробки передач часто устанавливают на популярные кроссоверы. Логика проста: для семейной машины более комфортной в работе коробки еще не придумали.

Бесступенчатые коробки передач часто устанавливают на популярные кроссоверы. Логика проста: для семейной машины более комфортной в работе коробки еще не придумали.

Клиноременный вариатор на сегодняшний день наиболее распространенный тип бесступенчатых коробок передач. Крутящий момент транслирует металлический толкающий ремень. Торцы надетых на ленту трапециевидных элементов, соприкасаясь с конусами, приводят их во вращение. Вместе с тем применен обычный гидротрансформатор с блокировкой, как на гидромеханических автоматах. При троганье с места гидротрансформатор повышает крутящий момент двигателя вплоть до величины в четыре раза большей. Применение этого узла обеспечивает плавное начало движения при передвижении в городских пробках.

Вариатор может быть даже компактнее механической коробки передач.

Вариатор может быть даже компактнее механической коробки передач.

Достоинства

Недостатки

  • Отсутствуют переключения
  • Проще и дешевле гидромеханического автомата
  • Ресурс ремня, как правило, ограничен 150 000 км

Вариатор клиноцепной

Примеры использования: Audi А6, Subaru Forester.

Устройство похоже на клиноременный вариатор, но вместо ремня в качестве передачи используется металлическая цепь, состоящая из пластин, соединенных клиновидными осями. Именно торцы этих осей и передают крутящий момент. Другое отличие состоит в том, что в  коробках Audi используется пакет сцеплений и двухмассовый маховик вместо гидротрансформатора.

Вариатор, устанавливаемый на Ауди, спроектирован под продольное расположение двигателя.

Вариатор, устанавливаемый на Ауди, спроектирован под продольное расположение двигателя.

Достоинства

Недостатки

  • Отсутствуют переключения
  • Проще и дешевле гидромеханического автомата
  • Ограничения по передаче крутящего момента

Оба типа бесступенчатых трансмиссий в последнее время стали делать с виртуальными ступенями. Якобы это больше нравится водителям, потому что двигатель не воет на одной ноте.

Обычно вариатор быстро перегревается при езде по серьезному бездорожью. Достаточно немного побуксовать. Но есть и исключения.

Например, Subaru Forester, оснащенный вариатором, способен на многое за пределами асфальта.

Обычно вариатор быстро перегревается при езде по серьезному бездорожью. Достаточно немного побуксовать. Но есть и исключения. Например, Subaru Forester, оснащенный вариатором, способен на многое за пределами асфальта.

По потребительским свойствам вариатор — лучший тип коробки передач. Она обеспечивает быстрый разгон, а что до монотонного звука… Помнится, Хоттабыч удалил звук двигателей летящего самолета, а к чему это привело? Участники событий едва спаслись… На ровном шоссе при скорости автомобиля чуть за сотню обороты двигателя не достигают 2000. Торможение двигателем — есть. Лично я побаиваюсь за ресурс ремня и грею зимой даже больше не двигатель, а вариатор. А так — идеальная коробка (тьфу, не передач)!

И, да, забыл: вариаторы на склоне назад не откатываются!

Старая добрая гидромеханическая коробка передач

Примеры использования: практически весь модельный ряд корейских и американских брендов, а также относительно мощные автомобили других производителей.

Представляет собой ступенчатую планетарную коробку передач, соединенную с двигателем через гидротрансформатор. Выбор и переключение планетарных рядов раньше осуществлялись гидромеханически, а сейчас вездесущая электроника вместе с системой управления двигателем определяет, на какой передаче следует работать силовому агрегату в данный момент. Число ступеней постоянно увеличивается, достигая девяти на самых дорогих автомобилях.

Достоинства

Недостатки

  • Отработанная конструкция
  • Возможность оперировать с огромными крутящими моментами
  • «Живучесть» при длительном буксовании
  • Несколько меньший КПД, чем у вариатора
  • Чувствуются переключения, особенно при небольшом количестве ступеней

Материалы по теме

Четырехступенчатые гидромеханические коробки передач современным требованиям удовлетворяют все меньше и меньше. На разгоне и при эксплуатации в городе переключения чувствуются довольно заметно. На трассовых скоростях велик расход топлива из-за невозможности обеспечить оптимальные обороты двигателя. Даже небольшое увеличение подачи топлива приводит к переходу на третью передачу, и двигатель взвывает еще сильнее.

Здесь особенно выделяется «всефранцузская» четырехступенчатая коробка передач DP0. Эту коробку и ее многочисленные реинкарнации до сих пор устанавливают на огромное число относительно маломощных автомобилей Peugeot, Citroen и Renault. Наиболее часто в нашей стране с этой коробкой сталкивались владельцы таких автомобилей, как Peugeot 307, Citroen С4, Renault Logan (со всем семейством) и Megane. Нрав коробки довольно строптивый, случаются «затыки» с переключениями. Надежность тоже не выдающаяся: редкая КП этого типа доживает до 80 тысяч км без ремонта. Причем иногда удается обойтись заменой клапанов, а порой приходится менять половину «начинки».

А вот «всеяпонский» производитель автоматов Jatco сумела сделать относительно беспроблемную «четырехступку». Одна из версий ставится даже на седанчик и хэтчбек, выпускающиеся у нас под японским брендом Datsun.

И все-таки для современного автомобиля с гидромеханическим автоматом число ступеней должно быть не меньше шести. Сверхпопулярные Rio и Solaris в последней генерации это полностью подтверждают. Многоступенчатые автоматы куда экономичнее, особенно при езде по трассе. На мощных бизнес-седанах, на тяжелых кроссоверах и внедорожниках альтернативы гидромеханическим трансмиссиям и вовсе нет и пока не предвидится. Скорее уж они станут гибридными, и тогда вся трансмиссия будет скомпонована совсем иначе. Но это уже другая история.

Выводы

Для тяжелых условий эксплуатации, для мощных двигателей или в ситуации, когда нравящаяся машина не выпускается с другим типом автомата, можно брать гидромеханическую коробку передач. Но с числом ступеней не меньше шести.

Вариатор хорош в составе малых и средних автомобилей (не больше, чем среднеразмерный кроссовер).

Автомобиль с роботизированной коробкой передач и двумя сцеплениями советую покупать, только если вы собираетесь ездить на нем не дольше гарантийного срока. Дальше все преимущества будут нивелированы дорогостоящим ремонтом. Автомобили с однодисковым роботом, на мой взгляд, не достигли совершенства в области удобства управления тягой и не отличаются высокой надежностью в трудных условиях.

В заключение, как обычно, жду от вас комментариев. Какой тип коробки передач вам нравится, на каком ездите и о каком мечтаете?

Фото: «За рулем» и фирмы-производители

Коробка автомат, вариатор, робот — в чём разница ?

Сегодня автоматические коробки передач устанавливаются на всё большее число новых автомобилей. А на некоторые автомобили, например, так вообще ставят только «автомат», а вариант с «механикой» покупателю даже не предлагается. Ещё до покупки автомобиля, полезно знать, какие бывают автоматические коробки и в чём их отличия.

На сегодняшний день существует три вида «автоматов»

— «Обычный» (гидротрансформаторный),

— Вариатор

— Роботизированный (робот).

Различия между ними важно знать не только при покупке нового автомобиля, но и подержаного — несведущему покупателю нечестный продавец легко может выдать вариатор или «робот» за классический «автомат». Так давайте узнаем, в чём между ними разница и какую коробку передач лучше выбрать ? Начнём с обычного автомата.

Классический автомат (гидротрансформаторный)

Это самый популярный и распространённый вид автоматических коробок. Главной особенностью этой коробки является то, что она работает с помощью специального трансмиссионного масла. Масло это находится под давлением и постоянно движется по замкнутому кругу. Таким образом оно передаёт крутящий момент от двигателя к колёсам.

За последнее время автоматическая коробка серьёзно усовершенствовалась. Так, если лет 10 назад стандартным считался 4-ступенчатый автомат, то сегодня такая коробка безнадёжно устарела, а её место заняли 6 и 7, а иногда и 8-ступенчатые. Благодаря этим, а также другим нововведениям, уменьшился расход топлива, появились различные режимы работы коробки («Зима», «Спорт» и т.д.), в том числе режим ручного переключения передач (тип-троник). Ну а достоинства у гидротрансформаторного автомата следующие:

— Режим ручного переключения передач

— Отсутствие возможного перегрева двигателя

— удобство управления

Но имеют место и недостатки:

— Высокая цена автомобиля с такой коробкой

— Высокая цена на обслуживание и ремонт

— Невозможность длительной буксировки автомобиля

— Большой расход топлива

Вариатор

Вариатор — разновидность бесступенчатой трансмиссии. Также может встречаться обозначение CVT. Это аббревиатура от Countinuously Variable Transmission. Селектор коробки-вариатор очень похож на селектор обычной автоматической коробки, и поэтому сразу понять, какая коробка на автомобиле установлена, бывает непросто.

Описать схему работы вариатора простыми словами можно так: это два колеса, между которыми натянут ремень или цепь. Колёса эти раздвигаются и сдвигаются — за счёт этого и изменяется передаточное число.

Главная отличительная особенность вариатора — это отсутствие передач. Ступенчатого переключения передач не происходит — передача изменяется непрерывно. Благодаря этому вариатор обеспечивает автомобилю безупречную плавность хода. Плючс вариатор постоянно автомобиль лучше разгоняется, потому что вариатор постоянно поддерживает пик крутящего момента. Ну а в целом, вариатор обладает следующими преимуществами:

— Маленький расход топлива

— Быстрый и плавный разгон

— Комфорт при движении

— Малый вес

Но вариатор также обладает и недостатками, а именно:

— Повышенный шум при работе

— Малый срок службы (до 200 тыс. км.)

— Высокая стоимость обслуживания и ремонта (плюс некоторые автопроизводители сами заявляют, что их вариаторы неремонтопригодны и даже не выпускают к ним запчасти — только замена)

— Ограничение по мощности двигателя (вариатор не выдержит большого крутящего момента)

— Высокая цена

— Плохо переносит резкое трогание и агрессивную езду

Робот

Роботизированная коробка — это что-то среднее между «механикой» и «автоматом». Главное отличие робота от механики — это наличие блока управления, который и занимается переключением передач за водителя. И здесь также присутствует некоторая пауза при переключении.

Помимо вышеописанной паузы, роботу присущи и другие недостатки:

— Рывки и толчки при переключениях

— Медленная реакция

— Необходимость включения режима «N» при остановке с работающим двигателем (иначе можно его перегреть)

— Невозможность буксировки

Как видно, недостатков у робота хватает. Но ведь не спроста на автомобили с роботом есть прос — ведь эта трансмиссия обладает следующими достоинствами:

— Низкая цена в сравнении с «автоматом» или вариатором

— Низкий расход топлива

Но всё же роботы — это уже уходящиее прошлое, и они постепенно вытесняются более современными разработками, а именно…

Переселективная трансмиссия

Переселиктивная трансмисся — это роботизированная трансмиссия второго поколения. Она также имеет название DSG — это аббревиатура от Direct Shift Gearbox (коробка передач с синхронизированнымпереключением).

Такая коробка — самая совершенная в настоящее время. Она имеет два диска сцепления — один переключает чётные передачи, а второй — нечётные.

Ключевая особенность коробки DSG состоит в том, что в этой коробке постоянно включены две передачи. Но только один из двух дисков соединён с двигателем, а второй находится наготове. Как только происходит смена передачи и первый диск отключается, второй мгновенно подключается. На переключение передачи уходит меньше секунды, а по плавности хода DSG можно сравнить с вариатором.

Однако и у DSG есть свои недостатки. Эта трансмиссия обладает очень сложной конструкцией, вследствие чего её обслуживание имеет высокую стоимость. Кроме этого, даже крупный сервис не всегда готов взяться за ремонт такой коробки, да сам ремонт, бывает, просто невозможен. Поэтому при поломках часто единственным выходом остаётся лишь полная замена трансмиссии ну или в лучшем случае замена электронного блока управления. Ещё один минус коробки DSG — это перегрев сцеплений после долгой езды, из-за чего при переключениях передач могут возникнуть рывки автомобиля.

Автомат, вариатор, робот или DSG — что лучше ?

Так какую же коробку лучше выбрать ? Ответить на этот вопрос можно, зная финансовые возможности и манеру езды покупателя автомобиля.

Однако, большинство автомобилистов всё же сходятся во мнении, что классический гидротрансформаторный автомат сегодня является оптимальным решением. Несмотря на плавность хода коробки-вариатора и на экономочность коробки DSG, вариатор обладает низким ресурсом и его устанавливают лишь на автомобили с малообъёмными моторами, а DSG, ввиду новизны технологии, часто оказывается неремонтопригодной.

Ну а в пользу обычного автомат говорит тот факт, что на его конструкция прошла испытание временем и в настоящий момент является наиболее «обкатанной» и надёжной, а многие его недостатки не являются критическими.

Автомат, робот или вариатор. Какую коробку передач выбрать? | Об автомобилях | Авто

Обычно под одним словом «автомат» понимают один из трёх наиболее популярных видов трансмиссии: классическую АКПП, роботизированную или вариаторную. Сказать определённо, какая коробка лучше, нельзя, иначе производители не придумывали бы разные конструкции. Выбор зависит от личных предпочтений и целей автомобилиста. Разберемся, в чём отличия.

Классика

Самым старым из типов автоматической трансмиссии является так называемый классический автомат, который Cadillac стал использовать ещё в 30-х годах прошлого века. Роль сцепления, которое соединяет мотор с коробкой передач, выполняет гидротрансформатор. Долгое время автоматы были четырёхступенчатыми, и только в последние годы современные машины стали комплектовать восьми- и девятидиапазонными коробками.

Плюсами классической гидромеханической АКПП является достаточно плавное переключение передач и высокая надёжность по сравнению с другими трансмиссиями. Конечно, не считая старую добрую механику — по этому показателю её простая конструкция вне конкуренции. Автоматы без вмешательства техников спокойно проживают в среднем 150–200 тысяч километров. Хотя по ресурсу агрегаты от разных производителей могут существенно отличаться. В большинстве случаев проблемы можно решить ремонтом конкретной детали в механической части КПП. В целом же, гидромеханический автомат — дорогой узел.

К созданию других коробок инженеров подтолкнули недостатки классических АКПП. Они вызывают повышенный аппетит и не могут похвастаться головокружительной динамикой. Хотя с развитием сложных конструкций и технологий разница всё менее существенна, тем не менее при прочих равных она есть.

Быстрый и сложный

Решить проблемы автомата была призвана роботизированная трансмиссия. Если не вдаваться в подробности, робот — это конструктивно та же механика, только с автоматизированным сцеплением и переключением передач. Из-за упрощённого механизма такие коробки легче и занимают меньше места, что позволило устанавливать их даже на малолитражки вроде Fiat 500 или Opel Corsa. Важный плюс — автомобили с роботами реже заезжают на заправку.

Однако простые роботы с одним сцеплением на недорогих машинах имеют раздражающий эффект — постоянные задержки, толчки и рывки при переключениях, что особенно мешает в пробках. Неприятную особенность конструкции инженеры со временем решили, создав преселективный робот. Самый известный — DSG от концерна Volkswagen. По сути, это две коробки с двумя сцеплениями. Одна включает чётные передачи, другая — нечётные. В результате удалось добиться очень быстрого и точного переключения передач без разрыва мощности, не создавая никакого дискомфорта водителю.

В сложных роботизированных коробках спорткаров, таких как Ferrari или Lamborghini, переход на высшую ступень происходит за сотые (!) доли секунды. Многие производители указывают время разгона до сотни на автомобилях с продвинутым роботом даже меньше, чем с механикой. Просто человек никак не сможет опередить эту совершенную технику.

Удобство, динамика, экономичность — прекрасное сочетание. Неспроста именно преселективные роботы на данный момент считаются самым оптимальным видом автоматической трансмиссии. Однако у них есть ощутимый минус, с которым многие водители не могут смириться. Сложная конструкция делает практически любой ремонт коробки дорогостоящим занятием. Да и надёжность роботов у многих марок вызывает вопросы.

Без ступеней

Вариаторы — вообще отдельное направление. По большому счёту, это и не коробка передач, потому что в трансмиссии передач нет вовсе. Не будем вдаваться в подробности про изменение передаточных чисел благодаря вращению ремня по шкивам. Скажем лишь, что особенная конструкции позволяет автомобилю непрерывно передавать крутящий момент на колёса, а потому предельно плавно набирать скорость. Никаких рывков и толчков. Впрочем, у медали есть обратная сторона. При динамичном разгоне мотор «зависает» на определённых оборотах, что создаёт эффект троллейбуса. Двигатель шумно и монотонно гудит. Со временем этот недостаток разные производители устраняют. Современные бесступенчатые трансмиссии умеют так ловко имитировать работу классического автомата, что обыватель и не разберётся. Но это исключительно вопрос акустического комфорта.

Несомненным плюсом машин с вариатором можно назвать топливную экономичность. В паспортных данных расход «горючки» зачастую указывают ниже, чем на таких же автомобилях с механикой. Но, к сожалению, вариаторы достаточно капризны. Их нельзя перегревать и перегружать высокой мощностью, они не работают на пиковых нагрузках и не выносят долгой пробуксовки в снегу или грязи. Поэтому такие трансмиссии не встретишь на грузовиках или спорткарах. Вдобавок вариаторы требуют бережливого обслуживания, в том числе частой замены хорошего масла. Зачастую они непригодны для ремонта, и по истечении срока службы — примерно 150 тысяч километров — вариатор меняют. А это недёшево из-за сложной конструкции.

Смотрите также:

Робот и автомат в чем разница

Начиная с конца 80-х годов прошлого века, инженеры стремятся максимально нивелировать разницу между автоматическими и механическими трансмиссиями.

Одним из результатов такой работы стало появление роботизированной «механики», которая на сегодняшний день присутствует в модельных линейках почти всех крупных автопроизводителей.

Какими же преимуществами и недостатками обладает такой «робот» в сравнении с классическим «автоматом»?

Недостатки и особенности робота

Начнем с конструктивных особенностей «робота», который по сути является механической коробкой передач, но без третьей педали. За выжим сцепления в такой КП отвечает электропривод (актуатор).

В отличие от автоматической коробки с гидротрансформатором, конструкция роботизированной «механики» значительно проще, поэтому и дешевле в производстве. Последнее преимущество сыграло главную роль в быстром появлении «роботов» на многих недорогих моделях.

Но как оказалось, производители немного поспешили с массовым запуском такой трансмиссии на рынок. Все дело в том, что большинство «роботов», особенно при активной езде, не обеспечивали плавного переключения передач, раздражая водителей рывками и задержками при смене ступеней, а также откатом при старте на подъеме. Кроме того, роботизированные КП не могли похвастаться высокой надежностью.

Роботизированная коробка передач с двойным сцеплением

Улучшить плавность «роботов» взялся концерн Volkswagen, внедрив на своих моделях в середине 2000-х годов преселективный «робот» с двумя сцеплениями (DSG). В таких трансмиссиях четные и нечетные передачи, расположены на отдельных валах, оснащенных индивидуальными сцеплениями.

Новый тип КП хоть и стал совсем недешевым в производстве, но избавился от медлительности первых «роботов» и даже смог обеспечить автомобилю динамику разгона лучше, чем у версий с обычной «механикой». В дальнейшем многие ведущие автопроизводители также начали переходить на подобные “автоматы”, заказывая их у ведущих производителей трансмиссий.

Впрочем, в некоторых случаях остались вопросы к надежности отдельных КП данного типа. Но в сравнении с прежним «роботом» плавность и скорость переключений выросла просто несравнимо.

В подтверждение этого превосходства отметим, что в настоящий момент большинство брендов уже отказались от применения  «роботов» на базе классических механических КП и в ближайшем будущем такая трансмиссия может уйти в историю.

Помимо «скорострельности», современные роботизированные КП превосходят классические «автоматы» и по экономичности. «Роботы» вполне способны помогать двигателю расходовать топливо на уровне версий с «механикой».

Классический автомат

Казалось бы, будущее «гидротрансформаторных автоматов» предрешено, тем не менее, «старая гвардия» не спешит сдавать свои позиции.

Во-первых, развитие таких трансмиссий также не стоит на месте. Хотя у многих автолюбителей «классическая» АКП ассоциируется с морально устаревшими четырехступенчатыми «автоматами», которые не спешат переключать скорости и не особо заботятся об экономии топлива.

На самом деле такие коробки передач встречаются сейчас только на бюджетных моделях, да и то довольно редко. Подавляющая часть «автоматов» сегодня имеют минимум шесть скоростей и предлагают функцию ручной смены передач.

Более такого, производители активно увеличивают количество ступеней в таких КП, чтобы добиться лучшей экономичности. На автомобилях стоимостью выше среднего все чаще появляются восьми- и даже девятидиапазонные трансмиссии, а некоторые бренды, например Ford, уже завлекают клиентов «автоматами» на 10 (!) ступеней.

Большинство «роботов» не могут справиться с большим крутящим моментом мощных двигателей. Конечно, можно привести пример нескольких суперкаров с роботизированными КП, включая 1000-сильный Bugatti Veyron, но это скорее исключения, подтверждающие правило, тем более, что владельцы спортивных авто не особо беспокоятся о длительности ресурса таких КП.

Также роботизированными трансмиссиями не оснащаются полноценные внедорожники, потому что на сроке службе «роботов» негативно сказываются продолжительные пробуксовки на бездорожье и рывки из-за изменения сцепных свойств при контакте четырех колес с дорогой. Все это по большому счету не очень полезно и для обычных АКП.

Автомат или робот

Разница между «классическим автоматом» и «роботизированной» механикой с каждым годом уменьшается. Если «роботы» сохранят темпы “самосовершенствования”, подтянув надежность и выносливость, то «гидротрансформаторам» придется серьезно потесниться.

Похожие записи

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Чем отличается робот от автомата – разница в эксплуатации коробок

Количество разновидностей автоматических коробок передач постоянно растет. Еще не так давно знали просто о существовании АКПП — стандартного варианта автомата с привычным гидротрансформатором. Чуть позже на машины стали активно ставить бесступенчатые вариаторы, а не так давно популярность получили роботизированные коробки. Сегодня мы рассмотрим, чем отличается робот от автомата в техническом и эксплуатационном плане, а также какие есть плюсы и минусы у данных технологий. Сравнение двух разных типов коробок часто помогает получить ценные данные для покупки различных машин.

В зависимости от ваших предпочтений по коробке передач можно внести ясность в выборе модели при покупке авто на рынке нового транспорта. Потому к сравнению технологий в коробках следует отнестись с пониманием дела. Лучше всего протестировать машины с разными технологиями, чтобы иметь понятие о возможностях и особенностях их эксплуатации.

Технические отличия робота от стандартного автомата

В техническом плане эти типы коробок передач совершенно разные. АКПП — это конструкция с гидротрансформатором, а также электроникой для управления поведением автомобиля. Гидротрансформатор играет главную роль в этом комплекте устройств, выполняя переключения передач в зависимости от оборотов. Такая особенности позволяет стабильно эксплуатировать машину и ожидать ее определенной реакции.

Роботизированная коробка передач по своей природе является механикой, потому обладает рядом специфических преимуществ механической КПП. Коробка более эластична, обладает вполне примечательным набором различных функций и предоставляет экономичную поездку. Главные отличия робота от стандартной автоматической коробки состоят в следующем:

  • принцип работы надежной механической коробки передач, простота основной конструкции;
  • наличие большого количества электроники, которая управляет сцеплением и переключением;
  • возможности активного изменения типа конструкции, что используют все мировые производители;
  • экономия топлива из-за отсутствия перегазовки и возможностей раннего переключения передач;
  • возможность быстрого изменения настроек работы роботизированной коробки, придания характера;
  • технологичность и современность конструкции, высокая надежность качественно выполненных агрегатов.

У конструкции стандартной АКПП также есть определенные плюсы. Такая коробка более надежная, она не ломается и не требует дорогостоящего ремонта электроники. Конечно, гидротрансформатор является далеко не самым надежным технологическим узлом в машине, но при правильной эксплуатации он оказывается долговечным и служит не меньше двигателя.

Все эти особенности предполагают наличие собственного характера у машины с обычным автоматом и с роботизированной коробкой. Действительно, разница в конструкции не является единственным отличием этих двух узлов. Эксплуатируются коробки также с индивидуальными особенностями и создают определенные ощущения при разных режимах поездки.

Особенности практической эксплуатации робота и стандартной АКПП

Роботизированная коробка в эксплуатации не требует никаких особенностей. Сегодня фирменные роботы есть у многих уважающих себя концернов, и часто производители дают индивидуальные рекомендации по использованию узлов. К примеру, DSG-роботы от компании Volkswagen рекомендуется использовать на пониженных оборотах, не применяя режим Sport.

Роботизированные коробки PowerShift от Ford могут работать лучше всего в среднем диапазоне оборотов, повышая не только эластичность реакций машины, но и расход топлива. Автоматическая коробка передач, выполненная по стандартному образцу может выполнять самые разные задачи и работать в различных условиях. Специфика использования такого узла следующая:

  • не стоит слишком резко набирать обороты — это приведет к повышенным нагрузка на АКПП;
  • следует избегать буксировки других автомобилей и тяжелых прицепов — работа коробки настроена на вес машины;
  • при отсутствии нормального обслуживания придется вскоре менять целые узлы агрегата и прибегнуть к дорогому ремонту;
  • неисправности гидротрансформатора часто не зависят от эксплуатации — они возникают порой неожиданно;
  • работа агрегата достаточно стабильная, он часто с опозданием реагирует на нажатие педали газа;
  • нередко в системах автоматов предусмотрена возможность Kick-Down — экстренного сброса скорости на пониженную для быстрого разгона.

Учитывая достаточно чопорную работу автоматической коробки передач, система бывает достаточно надоедливой и недостаточно динамичной. Характер машины с одним и тем самым двигателем на механической коробки и с традиционной АКПП совершенно поменяется. Часто покупатели таких машин искренне удивляются вялой и не слишком динамичной поездке на очень мощных и объемистых двигателях.

Тем не менее, автоматическая коробка стандартного традиционного типа сохраняет силовой агрегат от чрезмерного износа, потому двигатели с автоматами нередко ходят намного дольше, чем с механической коробкой или вариатором. Но АКПП стоит дороже, потому ее все чаще можно увидеть в конструкции дорогого элитного автомобиля, а не в комплектации бюджетного транспорта. О плюсах и минусах различных типов коробок передач смотрите следующее видео:

Подводим итоги

Использование автоматических коробок передач становится все более актуальным в наше время, ведь этот удобный элемент позволяет больше внимания уделять дороге и получать максимум информации об окружающей обстановке. Также АКПП любого типа удобны в пробках, где на ручной коробке приходится постоянно переключаться. Но современная индустрия производства предпочитает более доступные узлы, такие как роботизированная коробка передач или вариатор.

Робот обходится производителю дешевле традиционного автомата, а в эксплуатации до 200 тысяч километром во многом показывает себя гораздо лучше конкурентов. Потому популярность этого типа КПП настолько возросла в последнее время. Есть ли у вас определенные предпочтения по поводу использования того или иного типа автоматических коробок передач?

Сравнение коробок передач Какая коробка передач лучше автомат или робота

Если еще недавно автомобилисты при выборе автомобиля могли полагаться только на автомат или механику, то сегодня выбор значительно расширился. С развитием автомобильной промышленности стали применяться трансмиссии нового поколения, такие как роботизированная коробка и вариатор. Чем отличается роботизированная коробка передач от автомата, и какая коробка передач лучше (автомат или робот), должен знать каждый покупатель автомобиля.От этого зависит выбор, который в конечном итоге сделает водитель.

Общий вид АКПП

Основой АКПП являются система управления и сама планетарная коробка передач с набором сцеплений и шестерен. Такая конструкция машины позволяет ей независимо переключать скорости в зависимости от оборотов двигателя, нагрузки и режима движения. Участие водителя не требуется.

Машина устанавливается на легковые и грузовые автомобили, также применима в автобусах. Главная передача и дифференциал дополняют конструкцию АКПП, если она установлена ​​на переднеприводном автомобиле.

Плюсы и минусы АКПП

Имеет как достоинства, так и недостатки:

Роботизированная коробка передач

Сочетает в себе функции как автоматической коробки передач, так и механической коробки передач. По сути, это та же механика, но с автоматическим управлением. Система управления с помощью исполнительных механизмов контролирует работу сцепления и переключения передач. В этом случае переключение происходит так же, как и в механике, только без участия водителя.

Изначально роботизированная коробка передач создавалась для того, чтобы значительно удешевить коробку передач по сравнению с автоматической трансмиссией и при этом объединить все преимущества автомата и механики, к которым в первую очередь относятся комфорт и простота эксплуатации.

В автомобилях спорткласса используется немного другой тип роботизированной трансмиссии — с двумя сцеплениями. Это позволяет добиться максимально возможной скорости переключения передач.

Преимущества и недостатки робота

Преимущества и недостатки роботизированной трансмиссии также будут представлены в таблице для наглядности.В то же время мы проведем сравнительную характеристику двух типов трансмиссий.

Преимущества роботизированной коробки передач Недостатки роботизированной коробки передач
1. Конструкция проще, чем у АКПП 1. Рывки при трогании с места и переключении передач (для МКПП с одним сцеплением)
2. Менее дорогое обслуживание и ремонт по сравнению с АКПП 2.Необходимость перевода рычага в нейтральное положение для длительной остановки и отката автомобиля на подъеме
3. Лучшая экономия топлива 3. Непредсказуемость поведения роботизированной коробки передач в сложных дорожных условиях
4. Повышенный КПД 4. Эффект «задумчивости» при переключении передач

Сделайте выводы

Какая коробка передач лучше? С точки зрения комфорта АКПП, несомненно, выигрывает, хотя разработчики робота постарались отвоевать эту позицию у АКПП.

Но робот будет экономичнее. Стоимость самого ящика, его обслуживание и ремонт обойдутся дешевле. А машина с роботизированной коробкой передач потребляет меньше топлива и масла, чем с автоматической.

Теперь надежность. Здесь можно поспорить. Ни ту, ни другую коробку нельзя назвать абсолютно надежной по сравнению с той же механикой. Также непонятно, как оба бокса поведут себя в сложных условиях. Но АКПП как минимум более предсказуема, чем робот, от которого неизвестно, чего ожидать.

Поэтому, какая коробка передач будет лучше, каждый водитель решает сам, исходя из своих представлений об удобстве и комфорте вождения. Стоит отметить, что робота легко принять за автомат: часто отсутствие педали сцепления как в автоматических, так и в роботизированных коробках передач приводит в замешательство неопытных водителей. Поэтому необходимо в процессе покупки внимательно изучить характеристики выбранного автомобиля.

Выбор коробки передач.Что лучше, механика, автомат, вариатор или робот?

МКПП на выбор, или автомат? А если автомат, то обычная машина, «робот» или вариатор? Такие вопросы очень популярны у автомобилистов при выборе, новый ли это, то ли подержанный автомобиль. Интернет наполнен темой коробок передач, как полезной информацией, так и информационным «хламом». Отличить полезное от хлама сможет только профессионал в своей области. Это его недостаток Интернета. Поэтому я решил написать несколько строк обо всей этой механике, автоматах, роботах и ​​вариаторах, причем, не погружаясь «в орехи», чтобы любой читатель, независимо от уровня технической грамотности, мог понять, что происходит и что ему, ЛИЧНО, будет лучше.

МКПП

Начнем с «механики». В случае механической коробки передач под капотом находится двигатель, «черный ящик» коробки со всеми ее валами, шестернями, синхронизаторами и сцеплениями. И между двигателем и коробкой передач в сборе сцепления. Нажали педаль сцепления — двигатель и коробка были полностью отключены. Пока вы удерживаете педаль сцепления нажатой, силовой агрегат и коробка передач никаким образом не связаны, и вы можете включить любую передачу в зависимости от условий движения.Это главное преимущество «механики», особенно для «продвинутого» водителя, который умеет и умеет применять активные приемы вождения. Например, в случае переднеприводного автомобиля перед маневром «положите» двигатель на колеса передней оси. А в случае с задним приводом «вкрутить» машину в поворот, переключиться на более крутую траекторию. Но, как часто бывает, недостатки — это продолжение достоинств. Активное «вождение», конечно, приятно, но владеть педалью сцепления и рычагом переключения передач в бесконечных пробках мегаполисов — занятие не из приятных.Это минус.

Гидромеханическая автоматическая трансмиссия, или «обычный автомат»

Чтобы не водить «из рук в руки» и не сильно нагружать ручки-ножки в плотном городском потоке, была изобретена автоматическая трансмиссия. Сначала появилась гидромеханическая АКПП (АКПП). Чтобы понять, как это работает, нужен … вентилятор (обычный, бытовой) и какая-то детская вертушка с винтом пропеллера, похожая на вентилятор. Включите вентилятор и поднесите к нему эту игрушку.Что случится? Пропеллер на игрушке тоже будет крутиться! А теперь представьте, что пропеллер приводит в движение не вентиляторный двигатель, а двигатель автомобиля. А второй винт располагается на валу, оставляя в «черном ящике» шестерни, муфты и все остальное. Оба этих винта заключены в герметичный корпус, заполненный специальной трансмиссионной жидкостью, называемой преобразователем крутящего момента.

Для чего эти страсти? А чтобы плавно съехать, переключайте передачи максимально плавно, без всякого сцепления «с ноги водителя», как в «механике» между двигателем и «черным ящиком» с передачами.Ведь для того, чтобы слезть, нужно плавно соединить мотор и «черный ящик» коробки. Вот гидротрансформатор, не теряя усилий от двигателя, он это делает. А жидкость нужна для того, чтобы передавать через нее вращательное движение. А потом воздух, он не справится. Плотность воздуха низкая для передачи энергии при таких скоростях вращения. Что касается переключения передач, то они выполняются по команде блока управления автоматически, в зависимости от условий движения. Раньше эти блоки были гидравлическими, теперь электронными.

В целом в гидромеханической АКПП вроде все хорошо. Самостоятельно идет, сам переключается. Водителю остается только нажать педаль «газа» и тормоза, а также щелкнуть «автоматический» переключатель между «Парковка», «Езда» и «Назад». И работает эта штука довольно надежно. Если не прикидываться Шумахером на АКПП, и соблюдать Правила ТО, то она не сломается.

Но есть и недостатки. Основные из них — это ощутимые моменты автоматического переключения диапазонов АКПП в «черном ящике» с передачами, а также более высокий расход топлива по сравнению с «механикой» с такими же силовыми агрегатами.Потребность в комфорте, рост цен на топливо и забота об окружающей среде побудили инженеров снова задуматься об автоматизации.

«Преобразователь частоты». CVT

Чтобы понять, что придумали инженеры, представьте … велосипед. Педали, две звездочки и цепь между ними. На заднем колесе чуть более продвинутых моделей есть несколько звездочек для переключения передач. Я перешел на большую звездочку — крутить педали легче и можно ехать по крутой горке, только крутить педали нужно чаще.При этом скорость мотоцикла падает, но это цена за высокое сцепление с дорогой. А если вы едете по ровной местности или с горы, то вы включили звездочку сзади — вы крутите педали реже, и скорость велосипеда увеличивается. А теперь представьте, что на велосипеде вместо цепной передачи стоит ременная передача. То есть вместо цепи — ремень, вместо звездочек — шкивы, только вместо связки звездочек на заднем колесе — ОДИН шкив, но его диаметр может … меняться плавно. Представлено? Вот перед вами АКПП вариатор! Один шкив имеет постоянный размер, второй — переменный, и его диаметр изменяется по команде блока управления в соответствии с условиями движения.А между ними — прочнейший «пояс», представляющий собой либо многорычажную цепь, либо составную из металлических пластин. Плавное изменение диаметра одного из этих шкивов приводит к тому, что моменты переключения АКПП вообще не ощущаются. Ведь у них просто нет этих моментов переключения. J Удивительно удобная штука в работе этот вариатор! Но не обошлось и без недостатков, значительных и меньших. Вариаторы

стоят недешево. Также они категорически не любят проскальзывания.Из-за того, что между «черным ящиком» со шкивами и ремнем нужно поставить один и тот же гидротрансформатор (для начала нужно!), А также из-за механического трения в «черном ящике», потери энергии довольно большие. , расход топлива, по сравнению с «нормальной» АКПП, немного меньше. А может и больше. А еще нужно «наколдовать» программы двигателя, чтобы он не гудел, как тележка на постоянной скорости при разгоне. Ведь пошагового сдвига нет. Поэтому инженеры снова открыли простор для исследований.

«Роботы». Роботизированные коробки передач

Чтобы преодолеть недостатки гидромеханических и регулируемых автоматических трансмиссий, несколько школ дизайна обратили внимание на … обычную механическую коробку передач. А что, если заменить ножной привод сцепления на электропривод, рычаг переключения передач и тягу к «черному ящику» с передачами электроприводами, а управлять сцеплением и передачами с помощью электронного блока, исходя из условий движения? Конечно, легко и скоро сказывается только сказка.Инженерам пришлось повозиться с программами управления этим агрегатом и надежностью электропривода, но автоматические механические трансмиссии, которые журналисты окрестили «роботами» или «роботами», пошли в серийное производство для небольших классов автомобилей. Это в точности классическая «механика», в которой переключением сцепления и передач управляет электронный блок.

Основным преимуществом большинства «роботов» является их высокая топливная экономичность, поэтому они изначально создавались. В конце концов, компьютер с совершенной программой управления никогда не ошибается, никогда не гневается, никогда не впадает в депрессию и никогда не устает, в отличие от водителей с другим опытом, навыками и устойчивостью к физическим и моральным нагрузкам.Следовательно, машина с «роботом» потребляет меньше топлива, чем такая же машина с любой другой коробкой передач, включая «механику». А еще такой «робот» дешевле любой другой АКПП при покупке, при заказе новой машины. Как это.

Но и здесь не обошлось без недостатков. Как ни старались инженеры оптимизировать время переключения, «клев» машины носом при резком разгоне очень заметен. Такие «роботы» для экономичной и тихой езды, а не для «Шумахера».Также они не любят пробуксовку в узлах сцепления. Инженерам снова пришлось потрудиться.

Представьте себе автомобиль с шестиступенчатой ​​механической коробкой передач. Представлено? Только коробка эта не совсем обычная. Точнее, совсем не обычное. Похоже, он состоит из ДВУХ агрегатов, причем 1-я, 3-я и 5-я передачи связаны с двигателем через один модуль сцепления, а 2-я, 4-я и 6-я передачи — через другой. Получается что-то вроде «два в одном». А теперь представьте, что все органы управления полностью автоматические, электронные и электрические.Более того, когда вы ускоряетесь, например, на 2-й передаче, блок управления УЖЕ ВКЛЮЧАЕТ 3-ю и ждет только лучшего момента, чтобы мгновенно «кликнуть-кудахтануть» независимое сцепление, чтобы «отпустить» вторую передачу и «выключить». заранее подготовленный 3-й. Переключение в такой АКПП занимает не доли секунды, а миллисекунды! Водитель и пассажиры просто не замечают этих переключений, а разгон плавный и очень быстрый. Например, в DSG, который первым в мире поставил на конвейер концерн VOLKSWAGEN, время переключения составляет 7 миллисекунд.Это намного быстрее, чем вы моргаете. Поэтому здесь нет рывков или рывков, как у описанных выше «роботов». ГАРАНТИЯ НА DSG 7 SPEED увеличена до 5 лет или 150 000 км: VOLKSWAGEN AG, идя навстречу пожеланиям клиентов, чтобы сохранить доверие клиентов к автомобилям концерна, Осуществляет бесплатный ремонт или замену коробок передач DSG 7 DQ 200 на заводе-изготовителе. расходы завода-изготовителя на срок до 5 лет или до достижения 150000 км с момента передачи автомобиля первому покупателю. Когда владелец автомобиля обращается к официальным дилерам с претензией на DSG 7 DQ 200, проводится диагностика. осуществляется бесплатный и при необходимости бесплатный ремонт в соответствии с действующими техническими рекомендациями концерна.

Точно так же такие «роботизированные» боксы переключаются не только «вверх», но и вниз. Блок управления коробкой передач тщательно «отслеживает» действия водителя с помощью датчиков на педалях и рулевом механизме и заранее подготавливает лучшую передачу для целей водителя.

Если я скажу, что такие «роботы» класса VW DSG работают блестяще, это не будет преувеличением, и не только с точки зрения переключения передач. Их блоки управления тоже не «устают» и не «ошибаются», поэтому расход топлива у автомобиля с DSG, особенно в городском цикле, меньше, чем с любой другой коробкой передач, в том числе и с «механикой».

Что касается недостатков, то их немного, но они, увы, такие: Дороговизна и недопустимость пробуксовки в узлах сцепления (правда, какое сцепление это нравится?).

Резюме: Как видите, однозначно сказать, что лучше, а что хуже, невозможно. Каждому свое!

«механика» или «робот» класса DSG от VW

Если вы активный водитель, то понимаете толк в скоростной и маневренной езде

традиционная гидромеханическая автоматическая трансмиссия

Выбирая внедорожник, хочется комфорта в по городу, но вы тоже выезжаете за город, и не только по трассе

простой «робот»

Если вы спокойный водитель, ездите по городу, выбирайте маленькую машину, а экономичность для вас очень важна — тогда вам подойдет более простой «робот» «Переменная», такая коробка подойдет любителям экстремальной плавности

твой-бор.ru

Что лучше: робот, вариатор, механика? Сравнить коробки передач

Проблема выбора: вариатор, робот, гидромеханика? Ищем оптимальную трансмиссию для определенных ситуаций. Я расскажу, почему каждая коробка хороша и плоха в той или иной ситуации. И какую трансмиссию отдать предпочтение при выборе новой машины.

Механическая коробка передач

Не так давно механическая коробка передач была на подавляющем большинстве автомобилей. Более того, до недавнего времени изучать право можно было только по механике.Но с тех пор многое изменилось. Сейчас механические трансмиссии уже не самые экономичные и не самые быстрые — роботы с двумя сцеплениями и современные гидромеханические автоматы с большим количеством передач превосходят старую-добрую механику как по разгону до сотни, так и по КПД. Более того, если с механической коробкой передач многое зависит от того, кто за рулем, автоматические трансмиссии с любым водителем будут делать то же самое и всегда давать примерно одинаковые результаты.

Впрочем, МКПП списывать рано.Во-первых, механика по-прежнему остается самым доступным вариантом. Во-вторых, механика легче ремонтируется, в-третьих, требует меньше внимания, чем другие трансмиссии. В-четвертых, в подавляющем большинстве случаев механика превосходит другие типы трансмиссий по надежности и долговечности. В-пятых, для некоторых механик по-прежнему очень мужественный.

При выборе очень подержанного автомобиля с пробегом 150 000 км лучше покупать автомобили с механикой, так как вероятность проблем с трансмиссией будет в несколько раз ниже.Также стоит порекомендовать сэкономить машину с механической коробкой передач тем, кто хочет сэкономить, и тем, кто большую часть времени ездит по проселочным дорогам — механика позволяет лучше контролировать мощность двигателя при обгонах, а количество переключений передач не обременяет.

Робот с одним сцеплением

Несмотря на то, что роботизированные коробки передач с одним сцеплением доказали свою несостоятельность в борьбе за клиента с другими трансмиссиями, такие коробки передач до сих пор встречаются на современных машинах.Самый известный пример — АвтоВАЗ. Но есть иномарки. Например, Смарт, Пежо, Фиат, Опель. Причина их неспособности забыть — дешевизна. После механических трансмиссий наиболее доступным вариантом являются роботы с одним сцеплением. По конструкции они очень близки к механике, только работа сцепления контролируется электроникой. В идеале такой робот должен служить не меньше обычной механики, все должно быть в порядке с надежностью и ремонтопригодностью. На практике очень часто возникают проблемы с управляющей электроникой.

К тому же такая трансмиссия неудобна ни на трассе, ни в городе. Переключения слишком медленные и запаздывающие, отзывчивость на газ минимальная, при переключении машина дергается. Если постараться шустрее, то коробка будет тупой. На длительных подъемах часто перегревается сцепление и коробка переходит в аварийный режим.

Одним словом, никому бы такую ​​трансмиссию не рекомендовал. Однако судьба может просто не оставить выбора тем, кто не умеет ездить с механикой, а бюджет не позволяет прогуляться и купить машину с более совершенной трансмиссией.Более того, иногда альтернативы просто нет. Так или иначе, покупать машину с однодисковым сцеплением стоит только для небольших машин, рассчитанных на владельцев с очень размеренным стилем вождения — им может понравиться трансмиссия.

Робот с двумя сцеплениями

Когда кто-то говорит «робот с двумя сцеплениями», большинство сразу же думают о DSG. А те, кто мало интересуется автомобилями, вспоминают связанные с этим скандалы и проблемы. Однако на данный момент роботизированные коробки передач с двумя сцеплениями — это самые современные, продвинутые, динамичные и экономичные трансмиссии.Решены проблемы с надежностью, которые были на старте продаж. Более того, подобные коробки появились у многих других производителей: VW, Porsche, Audi, BMW, Hyundai, Kia, Ford.

Так как это роботизированная коробка, суть ее практически такая же, как и у механики, только вместо одного сцепления в такой трансмиссии их два. Другими словами, пока вы едете на первой передаче, вторая уже готова к включению. Электроника может только быстро переключиться с первого сцепления на второе.После включения второй передачи готовится третья передача и так далее. Поэтому переключения получаются просто молниеносно, МКПП такой скорости переключения передач и не снились.

Чаще всего такие коробки передач имеют шесть или семь передач. Они бывают с сухим сцеплением и мокрым сцеплением. С точки зрения механики это важно, но конечный пользователь разницы не почувствует, поэтому мы не будем останавливаться на достигнутом. Я лучше расскажу о плюсах и минусах.

Плюсы: отличная динамика и экономичность.Хорошая езда. Одинаково хорошо роботы с двумя сцеплениями ведут себя в городе, за городом и даже на гоночной трассе.

Минусы: очень плохая ремонтопригодность, при этом срок службы напрямую зависит от стиля вождения и качества обслуживания. К тому же, как и у обычных роботов, у роботов с двумя сцеплениями есть сбои в управляющей электронике. Не все мастерские берутся за ремонт таких трансмиссий.

Робот с двумя сцеплениями подходит практически всем. Исключение — любители сурового и частого бездорожья.Данным трансмиссиям противопоказана длительная пробуксовка передач.

Вариатор

Вариатор задумывался как замена всем остальным трансмиссиям, но в реальной жизни из-за некоторых особенностей трансмиссии вариатор нравится не всем, да и не все производители его предлагают вообще. Больше всего вариаторов среди японских моделей. И несмотря на то, что я назвал коробку передач CVT как таковую, у нее нет фиксированных передач. И в этом вся его прелесть. Он передает крутящий момент и мощность на колеса не ступенчато, а плавно, поэтому у него максимальный ход, совсем нет толчков, как в троллейбусе.Вариаторы довольно экономичны, так как электроника всегда старается выбрать наиболее экономичное передаточное число на данный момент.

Вариаторы

разные: клиновые, клиноременные и тд. Потребитель не заметит разницы между ними. Особенность всех вариаторов — монотонный звук двигателя. Даже при разгоне обороты двигателя замирают и не меняются, как мы привыкли в автомобилях со всеми другими трансмиссиями. Иногда это раздражает или просто неприятно. Поэтому некоторые производители моделируют ступенчатую работу вариатора.

Вариатор

отлично подходят для небольших автомобилей с маленьким двигателем, для езды по городу и по трассе в неторопливом режиме. А вот вариатор категорически не подходит для машин с большим крутящим моментом и внедорожников, которые половину времени проводят в грязи с пробуксовкой колес (хотя бывают и исключения). Вариатор — очень щадящая трансмиссия, боится больших нагрузок и требует своевременного внимания и обслуживания, которое сводится к замене трансмиссионной жидкости и ремня или цепи.

В целом вариаторы отлично подходят для компактных городских автомобилей и небольших кроссоверов, таких как Nissan Qashqai, Toyota Rav4.Однако на других машинах вариаторы практически не встречаются.

Гидромеханическая машина традиционная

Гидромеханическая машина — старейший вид трансмиссии после механической. Такие коробки получили распространение в середине прошлого века. За такое долгое время автоматические коробки передач стали практически идеальными. Переключение стало плавным, электроника научилась угадывать моменты переключения. Количество передач увеличивалось в некоторых случаях до десяти, что значительно повысило эффективность.

Однако не все так однозначно. Увеличение количества передач привело к высокой сложности трансмиссии и очень частому переключению передач. Первый влияет на ремонтопригодность, второй — на ресурс. Однозначно говорить о ресурсе современных машин очень сложно. Некоторые коробки требуют внимания уже на 80 тыс. Км, некоторые обходятся без ремонта за 300 тыс. Км. Однозначно можно сказать только, что есть удачные коробки и неудачные, и общая тенденция такова, что старые трансмиссии, например, четырех- и пятиступенчатая, надежнее современных восьми-, девяти- и десятиступенчатых.

Однако обычные автоматические коробки передач с гидротрансформатором очень универсальны. Они подходят как для небольших автомобилей, так и для огромных внедорожников и грузовиков. Они прекрасно справляются с колоссальными нагрузками и большим крутящим моментом, довольно неприхотливы, если вовремя менять масло, и хорошо ездить.

Можно сказать, что самые универсальные трансмиссии — механические и традиционные автоматические. Они подходят для любой машины, для любого стиля вождения, не боятся пробуксовки, высокой нагрузки и бездорожья.Вариаторы отлично подходят для спокойной езды по асфальту и для не очень больших автомобилей с не очень мощными бензиновыми двигателями. Роботизированные коробки передач с одним сцеплением — это выбор не по любви, а по необходимости. По возможности лучше покупать машину с другой трансмиссией. Роботы с двумя сцеплениями идеальны во всем, но на серьезном бездорожье с ними лучше не лезть, а их ремонт влетит в копеечку, и только если кто-то возьмется их ремонтировать.

Александр Долгих

автомир.zahav.ru

Большинство автомобилистов, приобретающих автомобиль, заранее знают, что выбрать — «механику» или «автомат». Но выбор между «автоматом», «роботом» и «вариатором» вызывает затруднения — неподготовленному покупателю выбрать правильный вариант невозможно! В чем разница между вышеперечисленными передачами?

Сразу оговоримся: если позволяет возможность, выбирайте классический «автомат». Новомодные «роботы» и «вариаторы» появились сравнительно недавно, поэтому эксплуатационные недостатки практически неизвестны.Но у роботизированных и бесступенчатых трансмиссий есть и другие преимущества. Какие? Роботизированная трансмиссия или «робот»

Преимущества:

Пониженный расход топлива;

Дешевая трансмиссия;

Дешевый сервис.

Недостатки:

Низкая плавность переключения;

Низкая скорость переключения.

Как это устроено?

Самая успешная роботизированная трансмиссия — SMG (расшифровывается как Sequental M Gearbox), устанавливаемая на BMW M-Series.Основой этой трансмиссии является механическая 6-ступенчатая коробка передач, отключающая сцепление и переключающая передачи, за которые отвечает гидравлическая система с электронным управлением. Причем процесс переключения передач происходит практически мгновенно, всего за 0,08 секунды.

Однако есть более доступные способы превратить механическую коробку передач в роботизированную. Самый простой из них реализован на Mercedes-Benz A-класса, где механическая коробка передач оснащена электрогидравлической муфтой. При этом водитель переключает передачи, как в машине с обычной «механикой», но в салоне две педали — электроника отслеживает положение педали газа и рычага КПП и в нужный момент выключает сцепление. .

Чтобы рывки при переключении были мгновенными, а мотор не глохнул при резком торможении, система учитывает показания датчиков двигателя и АБС. Другой вариант — замена гидронасосов на шаговые двигатели. Именно так поступили создатели «роботов» на автомобилях Opel и Ford. Правда, в этом случае экономия обернулась рядом неприятных черт: сильных рывков и досадных опозданий. Однако бывают исключения. Японцы, применив такие же электродвигатели на Toyota Corolla, смогли добиться вполне приемлемого уровня комфорта и скорости переключения.

Бесступенчатая трансмиссия или «вариатор»

Преимущества:

Пониженный расход топлива.

Недостатки:

Высокая стоимость трансмиссии;

Высокая стоимость обслуживания.

Как это устроено?

Первая бесступенчатая трансмиссия была разработана инженерами голландской компании DAF. Принцип работы последнего элементарный — резиновый ремень передает крутящий момент (сегодня в автомобилях используется либо многослойный стальной ремень, либо многорычажная стальная цепь), передаваемый на движущиеся конические диски, образующие ременные шкивы.Когда ведущие диски раздвигаются, а ведомые сдвигаются, момент «выхода» увеличивается. Когда ведущие диски двигаются, а ведомые расходятся, момент «выхода» уменьшается. Главный недостаток вариаторов — отсутствие задней и нейтральной передач. Разные производители решают вышеперечисленные проблемы по-разному.

АКПП или «автомат»

Достоинства:

Высокая плавность переключения;

Высокоскоростное переключение.

Недостатки:

Повышенный расход топлива;

Высокая стоимость трансмиссии;

Высокая стоимость обслуживания.

Как это устроено?

Классическая автоматическая коробка передач (АКПП) состоит из двух основных компонентов. Первый — гидротрансформатор, заменяющий маховик. Второй — планетарный редуктор. Стоит отметить, что механическое наполнение «автоматов» очень мало изменилось за время их существования. Если только количество передач не увеличилось с двух (на Vauxhall Victor) до восьми (на Lexus LS460). Но системы управления претерпели значительные изменения.Если на первых автомобилях с «автоматами» нужно было выбирать нужную передачу перемещением переключателя вверх или вниз, то к середине прошлого века трансмиссии «научились» все делать самостоятельно.

Позже эту «независимость» стало возможно регулировать с учетом стиля вождения конкретного водителя, выбирая один из нескольких режимов работы. Например, активный водитель мог выбрать режим «спорт», а спокойный — режим «комфорт».Самые современные «машины», называемые адаптивными, способны самостоятельно «подстраиваться» под водителя.

Алексей КОВАНОВ http://autoban.km.ru/

Заметили ошибку на нашем сайте? Сообщите нам об этом. Выделите мышью неправильное слово или фразу и нажмите Ctrl + Enter

В настоящее время количество разновидностей редукторов неуклонно растет день ото дня. Сравнительно недавно автомобилисты сделали открытие о существовании штатных коробок автоматики, в конструкции которых предусмотрен преобразователь крутящего момента.

Наличие в автомобилях роботизированной коробки передач также становится частым явлением, хотя некоторые заядлые автолюбители недостаточно доверяют этому варианту конструкции. Вопросы становятся разумными и справедливыми: что лучше — автомат или робот? Какая коробка передач практичнее и проще в управлении? Чем автоматическая коробка передач отличается от робота? Давайте разберемся.

Вопреки распространенному мнению, роботизированные ящики не являются «родственниками» автоматов. По своей сути механическая трансмиссия — это механическая трансмиссия, в которой сцепление и трансмиссия автоматизированы.Человек, сидящий за рулем такой машины, а также состояние дорожного покрытия только являются основой работы такой коробки передач.

Принятие решений и режимов работы осуществляется внутри коммутационной коробки с помощью специального электрического блока, для которого задаются алгоритмы действий в определенных ситуациях. Такой принцип работы характерен для МКПП. С вопросами: чем МКПП отличается от АКПП, в чем разница между двумя обозначенными видами, мы разобрались.Двигаться дальше.

Роботизированная коробка передач отличается:

  • комфорт;
  • надежность;
  • относительная рентабельность;
  • дешевизна.

Коробка передач роботизированная коробка передач

Также обозначенные типы коробок передач могут отличаться конструктивными особенностями. Кстати, варианты роботов могут различаться между собой и некоторыми конструктивными особенностями. Общим для всех опций является наличие в конструкции принципа МКПП (механическая коробка), которая управляется, как мы выяснили ранее, электронными «мозгами».

Для устройства механической коробки передач требуется фрикционная муфта. Он может быть однодисковым или многодисковым. В современных версиях роботизированных боксов используется система двойного сцепления. Эта особенность позволяет избежать серьезных потерь мощности при сохранении показателей производительности.

Роботизированный зубчатый привод

Системы привода в механической трансмиссии могут быть двух типов: гидравлические или электрические. В случае электрических контроллеров в конструкции предусмотрены специальные устройства и механизмы, такие как серводвигатели.Если привод представлен гидравлическим видом, то работа происходит за счет специальных цилиндров, управляемых электромагнитными клапанами.

Яркими представителями таких трансмиссионных систем являются Ford и Opels. Стоит отметить, что приводы электрического типа отличаются недостаточным быстродействием. Хорошо бы понимать, что гидравлические системы обеспечивают постоянное давление, то есть затраты энергии в этом случае значительно возрастают. Чаще всего такие решения предусмотрены для спорткаров.

Область применения

Роботизированные сменные коробки часто можно встретить на автомобилях эконом-класса. Яркие представители — Mitsubishi, Fiat, Peugeot. Наряду с ростом престижа и стоимости автомобиля возрастает вероятность использования в его конструкции гидравлических систем.

Процесс управления

Как уже отмечалось ранее, робот управляется специальным электрическим механизмом. В такой механизм встроены специальные датчики и исполнительные системы. Датчики контролируют основные параметры.

Стоит отметить, что контроль показателей давления и температуры для МКПП — практически обязательное условие нормальной бесперебойной работы. Датчики передают собранные данные в электрический блок управления, который на их основе формирует управляющие сигналы благодаря встроенным в него специальным алгоритмам.

Гидравлические системы, среди прочего, включают в себя гидроэлементы, которые обеспечивают управление процессами как структурный элемент. Пришло время рассмотреть особенности работы и конструкции АКПП, чтобы разобраться, что лучше: робот или автомат.

Автоматическая коробка передач

Автоматическая коробка передач представлена ​​двумя основными модулями — гидротрансформатором и коробкой передач. Основная функция гидротрансформатора — плавное переключение передач. В определенном контексте он также выполняет роль сцепления, присутствующего на машинах с механической коробкой передач. Коробка передач машины содержит ряд пар шестерен, находящихся в непрерывном сцеплении. Ступени коробки передач 4-я, 5-я и 6-я.

Достоинства и недостатки автоматической коробки передач

Некоторые автолюбители считают, что машина лучше.Попробуем разобраться почему, рассмотрев характерные особенности автоматов. Итак, АКПП позволяет сравнительно просто управлять машиной. Нет необходимости осваивать навыки применения сцепления, переключение передач тоже возложено на коробку, трудный момент для новичков — как начать работу и т. Д. И т. Д. — все это упирается в устройство АКПП.

Если рассматривать гидротрансформатор как аналог сцепления, можно сделать простой вывод: традиционное сцепление из-за недостаточных навыков и умений некоторых водителей быстро приходит в негодное состояние, и велика вероятность деформации муфты. появляется коробка передач.Кроме того, важно, что использование автоматических коробок передач в конструкции автомобилей дает меньшие нагрузки, чем их аналоги в виде роботов.

Это позволяет сделать следующий вывод: моторный ресурс не расходуется зря. Также следует понимать, что КПД машин с автоматикой невысокий. Эта особенность связана с тем, что гидротрансформатор тратит большую часть полезного действия на осуществление его правильной работы. Важной особенностью является то, что автоматические коробки передач работают при наличии небольшой задержки.Теперь, когда мы ближе познакомились с роботизированными и автоматическими ящиками, можно поговорить об их различиях.

Отличие роботов от машин

Если рассматривать оба варианта КПП с точки зрения эксплуатационных моментов, то разница между ними небольшая. В АКПП просто нет сцепления, хотя роботизированная версия его предусматривает, однако полностью берет на себя управление. В целом ящики-роботы — это аналог механических ящиков, а в автоматах предусмотрена система гидромеханических элементов.

Пожалуй, это главная особенность и отличие роботизированного варианта от автоматического. Стоит задуматься и важно понимать нюансы разгона с некоторым опозданием. Жидкости в машинах не справляются своевременно с воздействием ведомых валов из-за нежесткой адгезии. Эта конструктивная особенность была создана специально для того, чтобы служить своеобразным «предохранителем».

Трансформатор будет вращаться в свободном режиме, даже если он заедает. КПД, как мы отметили ранее, относительно невелик, что способствует потере части мощности.К тому же при выключенном двигателе АКПП просто не может работать.

Плюсы и минусы

Несомненным плюсом робота по отношению к станку является небольшая цена. Не только при покупке автомобиля, но и при последующем ремонте и обслуживании трансмиссии. Кроме того, в основе робота лежит классическая «механика», которая проверена и проверена годами.

Если говорить о показателях надежности, то АКПП снова проигрывает, потому что статистика показывает, что владельцы автоматов чаще ходят в ремонтные мастерские, чем их собратья-автолюбители с роботизированными коробками.

Также отмечаются проблемы с эффективностью: робот отличается меньшими потерями топлива, особенно при преодолении больших расстояний. Дополнительный плюс в копилку автоматизации: драйв и скорость, простота обслуживания и отсутствие необходимости искать мастерские, которые бы брались за обслуживание и ремонт. Гораздо меньше профессионалов в области робототехники.

Итого

Как мы выяснили, роботизированная коробка передач отличается от автоматической очень мало: это показатели мощности, тонкости обслуживания и долговечность.В общем, если серьезно и с точки зрения мнения профессиональных водителей или просто специалистов, знающих от и до мелочей как конструктивные, так и рабочие, и варианты автоматического исполнения, и робототехнические, то однозначный ответ на вопрос: какие это лучше? — просто нет.

В случае, если на автомобильном рынке будет представлено универсальное дизайнерское решение, многие мировые концерны уже давно бы его приняли и выпускали автомобили с унифицированной коробкой передач.

Окончательное решение о выборе той или иной стороны, той или иной машины, с автоматом или роботом — вы должны сделать сами, определив, чего вы хотите больше: плавности хода или динамики.Первый параметр характеризуется автоматической коробкой, второй — роботизированной. Удачи на дорогах и всего самого доброго!

Во-первых, при наличии АКПП в штатном режиме водителю не нужно самостоятельно выбирать и включать передачу, работать педалью и т. Д. На практике это значительно упрощает процесс управления автомобилем, увеличивает комфорт и безопасность.

Что касается самих автоматических коробок передач, то сегодня в повседневном использовании принято называть и «автомат», и (АМТ), и вариатор.Иными словами, есть несколько вариантов АКПП, при этом по ряду причин наиболее распространены классические АКПП и «роботы».

Прочитать статью

В чем разница между «роботом» и «машиной»

Чтобы понять, чем один вид коробки передач отличается от другого, необходимо рассмотреть их особенности и принцип действия. Сразу отметим, что и «автомат» (автоматическая трансмиссия), и «робот» (механическая трансмиссия, AMT) дают схожий конечный результат: трансмиссия автоматически выбирает и переключает передачи при движении с учетом скорости автомобиля, нагрузки двигателя, газа. положение педали и т. д..d.

Однако гидромеханическая автоматическая трансмиссия и роботизированная коробка передач РКПП принципиально различаются по конструкции и принципу действия. Давайте рассмотрим их особенности и отличия более подробно.

  • Начнем с «классической» гидромеханической «машины» с. В отличие от робота, появившегося сравнительно недавно, обычный автомат появился очень давно и стал первым типом АКПП, который начали массово устанавливать на автомобили.

Если коротко, автоматическая коробка передач — это скоростная коробка передач, в которой гидротрансформатор (GDT) играет роль сцепления. В то же время он передается в газотурбинный двигатель через трансмиссионную жидкость ATF.

Клапанная пластина () и блок управления автоматической коробкой передач отвечают за управление работой автоматической коробки передач. В пластине есть специальные каналы, по которым под давлением подается трансмиссионная жидкость. Каналы перекрываются клапанами ().По команде компьютера клапан открывается или закрывается, соответственно открывая или закрывая канал.

Когда клапан открыт, ATF воздействует на коробку передач, в результате чего происходит автоматическое переключение передач.

Достоинства и недостатки АКПП. Если говорить о плюсах и минусах гидромеханической АКПП, то в списке основных достоинств следует выделить надежность агрегата и проверенную временем конструкцию, а также способность выдерживать довольно большой крутящий момент.

Из минусов отметим, что АКПП хоть и работает достаточно плавно, моменты переключения передач в автомате все же заметны для водителя. Также переключение передач может «затягиваться», особенно на старых «машинах». Отдельно стоит отметить высокий расход топлива для автомобилей с данным типом трансмиссии.

Что касается ремонта, то в случае выхода из строя как самой коробки, так и гидротрансформатора, следует готовиться к серьезным расходам. При этом ремонтопригодность автоматических коробок передач вполне приемлема, большое количество СТО предоставляют услуги по ремонту.

  • Роботизированная коробка передач была изначально разработана для максимальной экономии топлива и комфорта при упрощении и снижении стоимости самого агрегата. В условиях мирового топливного кризиса и жестких экологических стандартов это решение было призвано решить ряд проблем, присущих классическим гидромеханическим автоматическим трансмиссиям.

Проще говоря, в роботизированной коробке ножной привод сцепления заменен электрическим, а переключение передач осуществляется исполнительным механизмом.Электронный блок контролирует выбор передачи и ее включение, а также включение и выключение сцепления.

Управление этими ящиками в принципе напоминает действие уже известного однодискового робота. Тут все те же сервоприводы, исполнительные механизмы и контроллер. Основное отличие состоит в том, что, например, когда включена вторая передача, компьютер одновременно включает третью передачу, удерживая сцепление «выжатым». Как только наступает время переключения, в доли секунды отключается вторая передача, а третья передача уже включается заранее.

Во время езды блок управления коробкой оценивает действия водителя, учитывает скорость автомобиля, положение педали газа, нагрузку на двигатель и ряд других параметров для выбора наиболее подходящей передачи для конкретных условий. .

  • Плюсы и минусы «робота» с двойным сцеплением. Если говорить о преимуществах, то точки переключения «вверх» и «вниз» для водителя незаметны, максимальная скорость переключения позволяет практически полное отсутствие перерыва в потоке мощности, автомобиль разгоняется плавно и быстро.

Также сохраняется максимальная топливная экономичность, присущая всем роботизированным коробкам передач. При этом преселективные коробки наиболее экономичны по сравнению со всеми другими типами (однодисковый робот, АКПП, вариатор, механика).

Из минусов, прежде всего, такие коробки достаточно сложные, автомобили с преселективной коробкой передач имеют высокую стоимость. Ресурс этих типов трансмиссий больше, чем у аналогов с одинарным сцеплением, но на практике он снижен по сравнению с классическими АКПП с гидротрансформатором.

Если говорить о ремонтопригодности, то в ремонте DSG и аналогов других производителей можно отказаться довольно дорого. На практике стоимость таких работ и запчастей часто превышает качественное восстановление АКПП с гидротрансформатором в рамках комплексной переборки или капитального ремонта КПП.

Обобщить

Как видите, у каждого из рассмотренных типов АКПП есть свои плюсы и минусы. Также, если рассматривать автоматическую коробку передач и коробку робота, есть отличия как в устройстве данных коробки передач, так и в принципах их работы.

Также перед покупкой автомобиля (особенно б / у) важно знать, какая коробка передач установлена, автомат или робот, как отличить эти типы коробок. Дело в том, что под общей концепцией АКПП сегодня могут быть скрыты как первый, так и второй варианты.

Как правило, рекомендуется отдельно изучить информацию о конкретной модели автомобиля, на каком поколении и в каких годах выпуска устанавливалась та или иная трансмиссия.Следует помнить, что визуально, например, DSG не отличить от обычной АКПП с Tiptronic. Другими словами, вам нужно знать, как отличить робота от машины в машине.

В заключение отметим, что однозначно ответить на вопрос, робот и автомат, что лучше, довольно сложно. Если речь идет о новых машинах с автоматом, то КПП лучше выбирать с учетом личных предпочтений и финансовых возможностей.

Как правило, автомобиль с однодисковым роботом дешевле и экономичнее по расходу, однако комфорт при переключении передач по сравнению с классической АКПП может быть снижен. По этой причине оптимально перед покупкой опробовать модели с коробками передач разного типа.

В случае преселективных роботизированных коробок передач классический автомат может показаться более «задумчивым», немного страдает комфорт при переключении передач, хуже динамика разгона и т. Д.

Однако надежность гидротрансформатора АКПП на практике выше, такую ​​коробку зачастую проще и дешевле ремонтировать. Эти особенности стоит учитывать отдельно, особенно если вы планируете приобретать подержанный автомобиль с автоматической коробкой передач.

Читайте также

Вождение автомобиля с автоматической коробкой передач: как пользоваться коробкой передач — автомат, режимы работы АКПП, правила использования этой трансмиссии, советы.

  • Почему АКПП пинает, АКПП дёргается при переключении передач, в АКПП рывки и неровности: основные причины.
  • Коробка передач — важный трансмиссионный агрегат любого автомобиля. Без него невозможно представить машину. Он мог двигаться, но это было бы неэффективно, дорого и однообразно. Использование коробки позволяет гибко менять режим движения, скорость. Это отличный способ повысить эффективность и сэкономить топливо. Механическую коробку передач заменили роботизированной коробкой передач и автоматической коробкой передач. Среди водителей существуют разногласия, споры о том, какая коробка передач лучше, а также в чем разница между роботизированной коробкой передач и автоматической.Покупка автомобиля часто зависит от принципа его действия и конструкции. Для опытных водителей важно — какая коробка в машине и как ее потом придется водить.

    История ее развития началась сто лет назад. Автоматическая трансмиссия состоит из двух основных компонентов — коробки передач и гидротрансформатора. Последний обеспечивает очень плавное, без заметных рывков переключение передач. Гидротрансформатор напрямую не включает переключение передач. Он только передает значение крутящего момента на первичный вал коробки передач и смягчает удары при переключении передач.Можно сказать, что он заменяет сцепление, которым оснащены машины с механической коробкой передач. Коробка передач автоматической коробки передач имеет конструкцию от четырех до восьми наборов передач. После зацепления они образуют ступени передачи.

    АКПП

    Эта коробка передач осуществляет переключение передач в автоматическом режиме, который регулируется не действием водителя, а числом оборотов коленчатого вала и давлением масла, которое независимо переключает ступени, обеспечивая оптимальный режим движения автомобиля.Электроника в этом случае используется минимально.

    Роботизированный бокс

    Робот-бокс представляет собой механическую коробку передач, на которой установлен блок управления. Он включает в себя гидравлический привод и электронный блок (сервопривод). Этот блок без вмешательства водителя управляет переключением передач и сцеплением. Принцип работы аналогичен механике. Только вместо человека процессом управляет электроника и гидравлика. Включение и выключение сцепления и выбор передач в роботизированной коробке управляют сервоприводами.Другое название — исполнительные механизмы. Обычно это шаговый двигатель с редуктором и исполнительным механизмом.

    AMG Speedshift — роботизированная коробка передач, используемая в SL 63 AMG

    Есть гидроприводы. Приводы управляются электронным блоком. По определенной команде он заставляет сервопривод выжать сцепление и включить требуемую передачу. Команда на переключение передач поступает с компьютера машины с учетом скорости вращения коленчатого вала, количества оборотов, данных АБС, ESP и других систем машины.В ручном режиме команда выдает водителю с помощью селектора передач и лепестков под рулем.

    Особенности работы автоматических и роботизированных ящиков

    Тактико-технические характеристики помогут разобраться, какой бокс лучше и удобнее. Автоматическая трансмиссия значительно снизила нагрузку на водителя при движении. Особенно в городских, сложных условиях. У каждого водителя свой стиль вождения и стиль. АКПП обладают способностью «подстраиваться» под тип вождения.Для машины характерно мягкое, еле заметное переключение передач. Но существенным минусом этой коробки является большой расход топлива, который особенно проявляется в городе. Ремонт данного агрегата также обойдется недешево.

    Роботизированная коробка близка к механической. Ремонт и обслуживание будут значительно ниже. Расход топлива тоже можно приравнять к механике, особенно в городских условиях вождения. Значительно меньший расход моторного масла, а это тоже экономия. Эффективность передачи крутящего момента от двигателя на ведущие колеса также выше, чем у машины.Огромным плюсом робота можно считать возможность производить переключение передач вручную, но с автоматической коробкой передач дело обстоит иначе. Ведь это может пригодиться в сложной ситуации. Плохими моментами можно считать медленное переключение передач и рывки в работе самой коробки. Особенно, если водитель в этот момент сильно нажимает на педаль акселератора. В городе при парковке необходимо поставить рычаг селектора в нейтральное положение.

    Видео с роботизированной и автоматической коробкой передач

    Выводы

    Все вышесказанное позволит обобщить и четко обозначить отличия роботизированной коробки передач от автоматической.

    Основные отличия следующие:

    • Робот имеет возможность вручную переключать передачи, а машина этой возможности лишена.
    • Робот конструктивно аналогичен механике, автомат имеет собственную конструкцию.
    • Роботизированная коробка передач потребляет меньше масла и топлива, чем автоматическая коробка передач.
    • Станок выигрывает у роботизированного бокса плавностью и оперативностью в работе.
    • Ремонт и обслуживание робота проще и дешевле станка.
    • Станок считается более надежным в эксплуатации.

    Мнения водителей разные. Несмотря на очевидные достоинства робота, многие автомобилисты отдают предпочтение машинке. Они считают, что он более предсказуем в работе и не преподносит «неприятных сюрпризов». Современные конструкции автоматов становятся все более экономичными, приближаясь по уровню обслуживания к роботам, имея возможность адаптироваться к манерам водителя.

    Что лучше выбрать коробку-робот или вариатор?

    Раньше большинство автомобилей оснащалось механическими коробками передач, но сегодня на выбор доступны различные модификации трансмиссий, в том числе роботы и вариаторы.Расскажем подробнее об отличиях роботов от вариаторов, расскажем о преимуществах и недостатках этих трансмиссий. А если вы ищете, где сдать автомобили на переработку за хорошие деньги, вот ссылка: https://scrapcar.cash.

    Что лучше выбрать коробку-робот или вариатор?

    Отличия роботов от вариаторов

    Особенностью конструкции вариатора является наличие конусов, по которым движется ремень, что позволяет плавно передавать мощность от двигателя на ведущие колеса.Этот дизайн был изобретен более 500 лет назад гениальным изобретателем Леонардо да Винчи. Сегодня существует ультрасовременная автоматика, которая может контролировать все процессы трансмиссии, обеспечивая при этом максимально возможный комфорт при вождении.

    По размерам роботизированные трансмиссии будут намного больше бесступенчатых трансмиссий. Неудивительно, что вариаторами оснащаются не только автомобили, но и квадроциклы и даже мотоциклы. Во время работы меньше фрикционное взаимодействие с вариатором, что снижает расход топлива.

    Чем отличается робот от коробки вариатора

    Благодаря конструктивным особенностям роботы устойчивы к высоким нагрузкам, тогда как вариаторы не любят быстрого разгона и скоростной езды, что приводит к их быстрому выходу из строя. Следует учитывать также сложность конструкции вариаторов, поэтому зачастую услуги по восстановлению таких трансмиссий просто не берутся, а стоимость ремонта вариатора будет намного больше, чем у робота или обычной автоматической трансмиссии.

    Вариатор изначально разрабатывался как городская трансмиссия, предназначенная для автомобилей с меньшей мощностью. В то же время мощные двигатели быстро изнашивают эту трансмиссию, поэтому вариаторы устанавливаются в основном на маломощные автомобили. Но у роботов более надежная конструкция, которая может передавать даже большой крутящий момент.

    Преимущества и недостатки робота и вариатора

    По сути, робот имеет преимущества автоматической и ручной трансмиссии. Такая трансмиссия имеет доступную стоимость, ее не так уж сложно отремонтировать, есть возможность снижения расхода топлива, водитель может переключить коробку в ручной режим и по своему усмотрению менять ступени в зависимости от ситуации на дороге.Если говорить о недостатках таких трансмиссий, то это заметные рывки и неровности, возникающие при переключении скоростей. Робот — продуманная трансмиссия, часто при нажатии на педаль газа проходит несколько секунд, прежде чем автоматика решает опуститься на несколько ступеней вниз и начать активное ускорение. При управлении трансмиссией робота помните, что рекомендуется часто включать нейтральный режим, иначе муфта перегреется и быстро выйдет из строя.

    Чем отличаются коробки «робот» от вариатора

    Если говорить о преимуществах вариаторов, необходимо отметить лучшую реализацию динамических характеристик двигателей, высокий КПД, экономию топлива, обеспечивающую максимальный возможный комфорт при управлении автомобилем.Однако, как и у вариаторов любой другой технологии, есть определенные недостатки, в частности, они дороги в обслуживании и трудны в ремонте, их нельзя использовать с двигателями большого объема. Также необходимо учитывать зависимость надежности таких трансмиссий от регулярности и правильности обслуживания, поэтому экономия на обслуживании ни в коем случае не рекомендуется.

    Подводя итог

    К преимуществам роботизированной трансмиссии относятся низкий расход топлива, доступные затраты на ремонт и техническое обслуживание, но их недостаток — нерешительность и рывки при переключении передач.Вариатор позволяет лучше реализовать мощность автомобиля, обеспечивает комфорт в использовании автомобиля, снижает расход топлива, но ремонт и обслуживание таких трансмиссий неизменно обойдется автовладельцам в кругленькую сумму.

    Прогресс в технологии автомобильных трансмиссий

  • 1.

    Ян, К. Д., Ли, С. Л., Яо, С. У .: Метод анализа планетарного механизма переключения скоростей на основе теории графов. J. Jilin Univ. Англ. Technol. Эд. 40 (4), 1029–1033 (2010)

    Google Scholar

  • 2.

    Тан, Г.Х .: Исследование развития механического привода трансмиссии транспортного средства. J. Zhuzhou Inst. Technol. 20 (4), 49–52 (2006)

    Google Scholar

  • 3.

    Лю X.J .: Анализ и проектирование компоновки многоступенчатой ​​планетарной передачи. J. Beijing Inst. Technol. Англ. Эд. 1 , 74–91 (1984)

    Google Scholar

  • 4.

    Донг П., Лю Ю.Ф., Тенберге, П. и др .: Разработка и анализ новой многоскоростной автоматической коробки передач с четырьмя степенями свободы. Мех. Мах. Теория 108 , 83–96 (2017)

    Google Scholar

  • 5.

    Ван, Й.К., Ван, У.К .: Разработка и применение схемы планетарной коробки передач с множеством степеней свободы синтетически. Мах. Des. 15 (10), 7–9 (1998)

    Google Scholar

  • 6.

    Се, Т.Л .: Синтез топологии планетарной зубчатой ​​передачи с несколькими степенями свободы для транспортного средства. Пекинский технологический институт. Диссертация (2015)

  • 7.

    Лю Т.Л .: Синтетический метод многоскоростной планетарной коробки передач с тремя степенями свободы с помощью компьютера. Veh. Power Technol. 1 , 51–58 (1984)

    Google Scholar

  • 8.

    Радзевич С.П .: Теория зацепления: кинетика, геометрия, синтез.CRC Press, Бока-Ратон (2013)

    Google Scholar

  • 9.

    Ван Ю.К .: Теория автоматизированного проектирования схемы планетарного редуктора с несколькими степенями свободы. Мах. Des. Res. 3 , 13–19 (1984)

    Google Scholar

  • 10.

    Тиан, Н.С., Чжоу, С.Р .: Исследование метода оптимизации схемы многовариантной планетарной передачи. J. Railw. Sci. Англ. 14 (2), 19–26 (1996)

    Google Scholar

  • 11.

    Лю Б.Д., Ли Дж., Ли Л.З .: Метод комбинированного решения для оптимизации планетарного редуктора с несколькими степенями свободы. Veh. Power Technol. 1 , 12–24 (1987)

    Google Scholar

  • 12.

    Кахраман, А., Лигата, Х., Кинцле, К. и др .: Методология кинематики и анализа потока мощности для планетарных зубчатых передач с автоматической трансмиссией. J. Mech. Des. 126 (6), 1071–1081 (2004)

    Google Scholar

  • 13.

    Иналполат, М., Кахраман, А .: Динамическая модель для прогнозирования боковых полос модуляции планетарного редуктора, имеющего производственные ошибки. J. Sound Vib. 329 (4), 371–393 (2010)

    Google Scholar

  • 14.

    Сюй, А.Ф., Цзя, Дж. М., Лю, Н .: Исследование схемы зацепления планетарной зубчатой ​​передачи на основе аналогии с улучшенным рычагом. J. Mil. Трансп. Univ. 16 (7), 91–95 (2014)

    Google Scholar

  • 15.

    Wang, Z., Zhang, J., Zhang, Y .: Новый метод, основанный на графических характеристиках, для анализа топологии на подстанциях и электростанциях. Пер. China Electrotech. Soc. 27 (2), 255–260 (2012)

    Google Scholar

  • 16.

    Цай, Л.В .: Применение характеристического полинома сцепления к топологическому синтезу планетарных зубчатых передач. J. Mech. Трансм. Автомат. Des. 109 (3), 329–336 (1987)

    Google Scholar

  • 17.

    Добрянский, Л., Фрейденштейн, Ф .: Некоторые приложения теории графов к структурному анализу механизмов. J. Eng. Инд. 89 (1), 153–158 (1967)

    Google Scholar

  • 18.

    Buchsbaum, F., Freudenstein, F .: Синтез кинематической структуры зубчатых кинематических цепей и других механизмов. J. Mech. 5 (3), 357–392 (1970)

    Google Scholar

  • 19.

    Курт, Ф .: Определение эффективности и синтез сложных планетарных зубчатых передач. Technische Universität München. Диссертация (2012)

  • 20.

    Троха, С., Ловрин, Н., Милованцевич, М .: Выбор планетарной зубчатой ​​передачи с двумя водилами, управляемой муфтами и тормозами. Пер. Famena 36 (3), 1–12 (2012)

    Google Scholar

  • 21.

    Арнаудов К., Караиванов Д .: Высшие составные планетарные передачи.Proc. VDI Berichte 1904 (1), 327–344 (2005)

    Google Scholar

  • 22.

    Ли С.Л .: Компьютерное проектирование схемы планетарной передачи на основе теории графов. Пекинский технологический институт. Диссертация (2009)

  • 23.

    Gumpoltsberger, G .: Systematische synthese und bewertung von mehrgängigen planetengetrieben. Хемницкий технологический университет. Диссертация (2007)

  • 24.

    Ма, М.Y., Liu, Y.F., Xu, X.Y. и др .: Автоматическое определение геометрической совместимости планетарной зубчатой ​​передачи. Автомат. Англ. 36 (5), 603–607 (2014)

    Google Scholar

  • 25.

    Ма, М.Ю., Лю, Ю.Ф., Сюй, X.Y. и др .: Синтез структуры планетарной передачи с 4 степенями свободы. J. Mech. Трансм. 38 (9), 34–38 (2014)

    Google Scholar

  • 26.

    Yuan, S.H., Лю, Х., Пэн, З.Х. и др .: Анализ составной раздельной передачи на основе четырехпортового устройства разделения мощности. J. Beijing Inst. Technol. Англ. Эд. 21 (1), 50–57 (2012)

    Google Scholar

  • 27.

    Ляо, Ю.Г., Чен, М.Ю .: Анализ многоскоростной трансмиссии и электрически бесступенчатой ​​регулируемой трансмиссии с использованием метода аналогии рычага для определения передаточного числа. Adv. Мех. Англ. 9 (8), 1–12 (2017)

    Google Scholar

  • 28.

    Лю, Дж., Пэн, Х .: Моделирование и управление гибридным автомобилем с разделением мощности. IEEE Trans. Control Syst. Technol. 16 (6), 1242–1251 (2008)

    Google Scholar

  • 29.

    Чжуан, В.К., Чжан, X.W., Чжао, Д. и др .: Оптимальная конструкция гибридных трансмиссий с тремя планетарными передачами и разделением мощности. Int. J. Autom. Technol. 17 (2), 299–309 (2016)

    Google Scholar

  • 30.

    Чжуан, W.C., Чжан, X.W., Чжао, Д., и др .: Проектирование быстрой конфигурации гибридной трансмиссии с несколькими планетарными передачами и разделением мощности с помощью комбинации режимов. IEEE / ASME Trans. Мехатрон. 21 (6), 2924–2934 (2016)

    Google Scholar

  • 31.

    Чжан, X.W., Пэн, Х., Сан, Дж. И др .: Автоматическое моделирование и проверка режимов для исчерпывающего поиска гибридных силовых агрегатов с двойным планетарным редуктором и разделением мощности. В: Proceedings of the ASME 7th Annual Dynamic Systems and Control Conference, San Antonio, USA (2014)

  • 32.

    Цай, Л.В., Шульц, Г .: Мотор-интегрированная параллельная гибридная трансмиссия. J. Mech. Des. 126 (5), 889–894 (2004)

    Google Scholar

  • 33.

    Дагчи О.Х., Пенг Х., Гриззл Дж.У .: Методология проектирования гибридной электрической трансмиссии с планетарными редукторами для повышения производительности и экономии топлива. IEEE Access 6 , 9585–9602 (2018)

    Google Scholar

  • 34.

    Цинь З., Луо Ю., Ли К. и др .: Новый подход к проектированию трансмиссии для гибридных гусеничных машин с разделением мощности. В: Proceedings of the ASME 2017 Dynamic Systems and Control Conference, Tysons Corner, USA (2017)

  • 35.

    Qin, Z., Luo, Y., Li, K., et al .: Оптимальный дизайн романа гибридная электрическая трансмиссия для гусеничной техники. Энергии 10 (12), 2141–2165 (2017)

    Google Scholar

  • 36.

    Zhuang, W., Чжан, X., Пэн, Х. и др .: Одновременная оптимизация топологии и размеров компонентов для гибридных трансмиссий с двойным планетарным редуктором. Энергия 9 (6), 411–427 (2016)

    Google Scholar

  • 37.

    Дагчи, О.Х., Пэн, Х .: Метод исследования гибридных архитектур электрических трансмиссий с двумя планетарными редукторами. SAE Int. J. Altern. Силовые агрегаты 5 (1), 94–108 (2016)

    Google Scholar

  • 38.

    Нго, Х.Т., Ян, Х.С.: Синтез конфигурации параллельных гибридных передач. Мех. Мах. Теория 97 , 51–71 (2016)

    Google Scholar

  • 39.

    Нго, Х.Т., Ян, Х.С.: Новые конфигурации гибридных трансмиссий с использованием простой планетарной передачи. J. Mech. Робот. 8 (2), 1–10 (2016)

    Google Scholar

  • 40.

    Hellenbroich, G., Ruschhaupt, J.: Новаторское семейство xDCT — чрезвычайно компактные 7- и 10-скоростные DCT FEV. В: Материалы симпозиума по международным автомобильным технологиям, Индия (2013)

  • 41.

    Лиш, М .: Beitrag zur systematischen synthese und bewertung von doppelkupplungsgetrieben. Хемницкий технологический университет. Диссертация (2012)

  • 42.

    Юэ, Дж. Х., Ли, Х .: Оптимизация параметров системы трансмиссии с 7 валами на основе MATLAB. J. Mech. Трансм. 39 (5), 80–84 (2015)

    Google Scholar

  • 43.

    Ма, M.Y., Лю, Y.F., Xu, X.Y., и др .: Выбор конструкции сдвигающего элемента на основе генетического алгоритма. J. Beijing Univ. Аэронавт. Астронавт. 40 (10), 1327–1377 (2014)

    Google Scholar

  • 44.

    Россетти, А., Макор, А .: Многоцелевая оптимизация гидромеханических передач с разделением мощности. Мех. Мах. Теория 62 , 112–128 (2013)

    Google Scholar

  • 45.

    Xu, X.Y., Chen, Z.F., Liu, Y.J., и др .: Процедура числовой оптимизации для задачи оптимизации зубчатой ​​передачи двухскоростной специальной электрической трансмиссии. Энергия 10 (9), 1362–1385 (2017)

    Google Scholar

  • 46.

    Чен, З.Ф .: Критические технологии мехатронной системы двухступенчатой ​​автоматической трансмиссии, предназначенной для электромобилей. Бейханский университет. Диссертация (2018)

  • 47.

    Чжан, Х., Пэн, Х., Сан, Дж .: Практически оптимальная стратегия управления питанием для быстрого определения размеров компонентов многомодовых гибридных автомобилей с разделением мощности. IEEE Trans. Control Syst. Technol. 23 (2), 609–618 (2015)

    Google Scholar

  • 48.

    Когучи, Т .: Эволюция вариатора со вспомогательной коробкой передач. В кн .: Материалы 9-го Международного симпозиума CTI. Шанхай, Китай (2015)

  • 49.

    Scherer, H .: 6-ступенчатая автоматическая коробка передач ZF для легковых автомобилей.Технический документ SAE 2003-01-0596 (2003)

  • 50.

    Дик А., Грейнер Дж., Локер А. и др.: Возможности оптимизации для современного 8-ступенчатого АКПП. SAE Int. J. Passeng. Cars Mech. Syst. 6 (2), 899–907 (2013)

    Google Scholar

  • 51.

    Уодзуми, С., Танигучи, Т., Цукамото, К. и др .: Новая шестиступенчатая автоматическая трансмиссия AISIN AW для автомобилей с задним приводом. Технический документ SAE 2004-01-0652 (2004)

  • 52.

    Кондо М., Хасегава Ю., Таканами Ю. и др .: 8-ступенчатая автоматическая коробка передач Toyota AA80E с новой системой управления трансмиссией. Технический документ SAE 2007-01-1311 (2007)

  • 53.

    Suzuki, T., Sugiura, H., Niinomi, A. и др .: Новая 10-ступенчатая автоматическая коробка передач с задним приводом для легковых автомобилей. SAE Int. J. Engines 10 (2), 695–700 (2017)

    Google Scholar

  • 54.

    Greiner, J., Doerr, C., Nauerz, H.и др .: Новый «7G-TRONIC» от ​​Mercedes-Benz: инновационная технология трансмиссии для улучшения ходовых качеств, комфорта и экономии топлива. Технический документ SAE 2004-01-0649 (2004)

  • 55.

    Doerr, C., Homm, M., Indlekofer, G .: Новая автоматическая коробка передач 9G-Tronic от Mercedes-Benz. В: Материалы 12-го Международного симпозиума CTI — Автомобильные трансмиссии и приводы HEV и EV, Берлин, Германия, стр. 153–160 (2013)

  • 56.

    Харт, Дж. М .: восьмиступенчатая автоматическая коробка передач с задним приводом General Motors.SAE Int. J. Passeng. Cars Mech. Syst. 7 (1), 289–294 (2014)

    Google Scholar

  • 57.

    Бремер, М., Диози, Г., Хаупт, Дж .: 10-ступенчатая автоматическая коробка передач. Патент США 13/852589 (2013)

  • 58.

    Клюемпер, С.: новая 9-ступенчатая полностью автоматическая коробка передач Allison для средних режимов работы. В: Материалы 12-го Международного симпозиума CTI, Мичиган, США (2018)

  • 59.

    Gaertner, L., Ebenhoch, M.: Автоматическая коробка передач ZF 9HP48, система трансмиссии, конструкция и механические детали. SAE Int. J. Passeng. Cars Mech. Syst. 6 (2), 908–917 (2013)

    Google Scholar

  • 60.

    Като, Н., Танигучи, Т., Цукамото, К. и др .: Новая шестиступенчатая автоматическая трансмиссия AISIN AW для автомобилей FWD. Технический документ SAE 2004-01-0651 (2004)

  • 61.

    Аоки, Т., Като, Х., Като, Н. и др .: Первая в мире 8-ступенчатая автоматическая трансмиссия с поперечным расположением передач.Технический документ SAE 2013-01-1274 (2013)

  • 62.

    Fischer, HC, Diaz-Theilmann, A., Lecomte, O., et al .: Третье поколение 6-ступенчатой ​​автоматической коробки передач Global FWD (GF6) . В: Proceedings of International VDI Congress, Friedrichshafen, Germany, pp. 299–316 (2014)

  • 63.

    Bockenstette, C.M., Marin, C.E., Otanez, P.G., и др .: Девятиступенчатая коробка передач с фиксирующим механизмом. Патент US 20140378266 (2014)

  • 64.

    Реннекер, К .: «Хет-трик» Форда: 3 новые 8-ступенчатые автоматические коробки передач.В: Proceedings of the 12th International CTI Symposium, Michigan, USA (2018)

  • 65.

    Suigino, S., Muramatsu, I.: 10-ступенчатая автоматическая коробка передач Honda. В: Материалы 12-го Международного симпозиума CTI, Мичиган, США (2018)

  • 66.

    Fu, Y.X., Yang, Y., Xu, X.Y. и др .: Новый архетип автоматической трансмиссии. Технический документ SAE 2011-01-1429 (2011)

  • 67.

    Шрайбер, В., Рудольф, Ф., Беккер, В .: Новая коробка передач с двойным сцеплением от Volkswagen.ATZ Worldw. 105 (11), 2–6 (2003)

    Google Scholar

  • 68.

    Хадлер Дж., Мецнер Ф., Шефер М. и др .: Семиступенчатая коробка передач с двойным сцеплением от Volkswagen. ATZ Worldw. 110 (6), 26–33 (2008)

    Google Scholar

  • 69.

    Хадлер, Дж., Шефер, М., Грёлих, Х. и др.: DQ500 — новая семиступенчатая коробка передач с двойным сцеплением Volkswagen для высоких крутящих моментов.In: Proceedings of the 18th Aachen Colloquium Automobile and Engine Technology, Aachen, Germany (2009)

  • 70.

    Machida, S., Yagi, N., Miyata, K., et al .: Разработка 8-ступенчатой ​​DCT с гидротрансформатором для автомобилей среднего размера. Honda R&D Tech. Ред. 26 , 119–125 (2014)

    Google Scholar

  • 71.

    Donges, A., Jauch, F., Sibla, C .: CO 2 потенциалов для дальнейшего развития комплекта трансмиссии 8HP.В: Материалы 16-го Международного симпозиума CTI, Берлин, Германия (2017)

  • 72.

    Шульц, Дж .: Разделительные пружины для активного разделения фрикционных дисков в системах мокрого сцепления. В: Материалы 10-го Международного симпозиума и выставки CTI, Берлин, Германия (2011)

  • 73.

    Наунхеймер, Х., Берче, Б., Рыборц, Дж. И др .: Автомобильные трансмиссии: основы, выбор, дизайн и применение. Шпрингер, Берлин (2011)

    Google Scholar

  • 74.

    Дёрр К., Кальчински Х., Ринк А. и др .: Девятиступенчатая автоматическая коробка передач 9G-Tronic от Mercedes-Benz. ATZ Worldw. 116 (1), 20–25 (2014)

    Google Scholar

  • 75.

    Итикава, С., Такеучи, Х., Фукуда, С. и др .: Разработка новой гибридной системы с подключаемым модулем для автомобилей компактного класса. SAE Int. J. Altern. Силовые агрегаты 6 (1), 95–102 (2017)

    Google Scholar

  • 76.

    Ивасава Т., Момои М., Хаякава К. и др .: Разработка новой системы вариатора для Jatco CVT7 W / R. В: Материалы 5-го Международного симпозиума CTI, Шанхай, Китай (2016)

  • 77.

    Донг, П., Лю, Ю.Ф., Сюй, X.Y .: Метод применения системы с двумя насосами в автоматических трансмиссиях для энергосбережения. Adv. Мех. Англ. 7 (7), 1–11 (2015)

    Google Scholar

  • 78.

    Лю Ю.Ф., Донг П., Лю, Ю., и др .: Разработка и применение электрического масляного насоса в автоматической коробке передач для повышения эффективности и функции старт-стоп. J. Central South Univ. 23 (3), 570–580 (2016)

    Google Scholar

  • 79.

    Лю Ю., Ван С.Х., Донг П. и др.: Динамический анализ и управление автоматической коробкой передач для функции старт-стоп и повышения эффективности. Математика. Пробл. Англ. 2015 , 1–13 (2015)

    Google Scholar

  • 80.

    Ли Р.Ф., Ван Дж.Дж .: Динамическая вибрация, удары и шум редукторной системы. China Science Press, Пекин (1997)

    Google Scholar

  • 81.

    Хаузер, Д.Р., Уэда, Ю., Харианто, Дж .: Определение источника воющего шума шестерен. Gear Solut. 2 , 17–22 (2004)

    Google Scholar

  • 82.

    Смит, Д.Д .: Шум и вибрация зубчатых колес. Марсель Деккер, Нью-Йорк (2003)

    Google Scholar

  • 83.

    Lei, Y.L., Hou, L.G., Fu, Y., и др.: Управление скулом трансмиссии с помощью многоцелевой оптимизации и модификации конструкции. Технический документ SAE 2018-01-0993 (2018)

  • 84.

    Белломо П., Де Вито Н., Ланг, Ч. и др.: Углубленное исследование силовых агрегатов транспортных средств для выявления причин дребезжания незакрепленных компонентов трансмиссии. Технический документ SAE 2002-01-0702 (2002)

  • 85.

    Джадхав С.М .: Анализ NVH трансмиссии, включая динамику сцепления и передачи. Технический документ SAE 2014-01-1680 (2014)

  • 86.

    Galvagno, E., Guercioni, G.R., Vigliani, A .: Анализ чувствительности конструктивных параметров трансмиссии с двойным сцеплением, сосредоточенный на характеристиках NVH. Технический документ SAE 2016-01-1127 (2016)

  • 87.

    Crowther, A.R., Zhang, N., Singh, R .: Разработка имитационной модели clunk для автомобиля с задним приводом с автоматической коробкой передач. Технический документ SAE 2005-01-2292 (2005)

  • 88.

    Ван, Дж., Лей, Ю., Ге, А. и др .: Анализ качества шума и разработка показателей в условиях переходного режима переключения.SAE Int. J. Passeng. Cars Mech. Syst. 1 (1), 250–257 (2008)

    Google Scholar

  • 89.

    Чатурведи, Г.К., Томас, Д.У .: Обнаружение неисправностей подшипников с использованием адаптивного шумоподавления. J. Mech. Des. 104 (2), 280–289 (1982)

    Google Scholar

  • 90.

    Юэ, Г., Ню, В., Чжао, Дж. И др.: Разрешение хныканья зубчатой ​​передачи путем модификации зуба и анализа динамики нескольких тел.Технический документ SAE 2016-01-1061 (2016)

  • 91.

    Байл, Ю., Гондхалекар, А., Кумбхар, М.: Исследования дребезжания нейтральной передачи на ранних стадиях проектирования. Технический документ SAE 2013-26-0109 (2013)

  • 92.

    Кэмпбелл, Б., Стокс, В., Стейер, Г. и др.: Снижение шума шестерен автоматической коробки передач посредством динамического моделирования методом конечных элементов. Технический документ SAE 971966 (1997)

  • 93.

    Монтанари, М., Ронки, Ф., Росси, К. и др .: Контроль и оценка рабочих характеристик сервосистемы сцепления с гидравлическим приводом.Control Eng. Практик. 12 (11), 1369–1379 (2004)

    Google Scholar

  • 94.

    Уотсон, М., Байингтон, К., Эдвард, Д. и др.: Динамическое моделирование и прогнозирование оставшегося срока службы на основе износа систем сцепления высокой мощности. Трибол. Пер. 48 (2), 208–217 (2005)

    Google Scholar

  • 95.

    Уокер, П.Д., Чжу, Б., Чжан, Н .: Нелинейное моделирование и анализ электромагнитных клапанов прямого действия для управления сцеплением.J. Dyn. Syst. Измер. Contr. 136 (5), 1–9 (2014)

    Google Scholar

  • 96.

    Лю, З., Гао, Дж., Чжэн, К .: Надежная конструкция контроллера проскальзывания сцепления для автоматической коробки передач. Proc. Inst. Мех. Англ. D J. Autom. Англ. 225 (8), 989–1005 (2011)

    Google Scholar

  • 97.

    Ван де Вен, Дж. Д., Кьюсак, Дж .: Синтез и базовые испытания цифровой муфты с широтно-импульсной модуляцией.Мех. Мах. Теория 78 (78), 81–91 (2014)

    Google Scholar

  • 98.

    Дутта, А., Депретере, Б., Ионеску, С. и др .: Сравнение двухуровневых стратегий NMPC и ILC для управления мокрым сцеплением. Control Eng. Практик. 22 , 114–124 (2014)

    Google Scholar

  • 99.

    Датта, А., Чжун, Ю., Депретер, Б., и др .: Стратегии обучения на основе моделей и без моделей для управления мокрым сцеплением.Мехатроника 24 (8), 1008–1020 (2014)

    Google Scholar

  • 100.

    Мэн, Ф., Чен, Х.Й., Чжан, Т. и др.: Контроль заполнения муфты автоматической трансмиссии для тяжелых транспортных средств. Мех. Syst. Сигнальный процесс. 64–65 , 16–28 (2015)

    Google Scholar

  • 101.

    Пинте, Г., Депретер, Б., Сименс, В. и др.: Итеративное обучение управления заполнением мокрых сцеплений.Мех. Syst. Сигнальный процесс. 24 (7), 1924–1937 (2010)

    Google Scholar

  • 102.

    Гао, Б.З., Чен, Х., Ху, Ю.Ф. и др.: Нелинейное управление с прямой связью и обратной связью для техники переключения сцепления. Veh. Syst. Дин. 49 (12), 1895–1911 (2011)

    Google Scholar

  • 103.

    Гао, Б.З., Чен, Х., Ли, Дж. И др .: Управление с обратной связью на основе наблюдателя во время фазы крутящего момента в процессе переключения сцепления.Int. J. Veh. Des. 58 (1), 93–108 (2012)

    Google Scholar

  • 104.

    Chen, L., Xi, G., Yin, C.L .: Адаптивное управление, указанное на модели, для компенсации перехода скольжения-прилипания во время включения сцепления. Int. J. Autom. Technol. 12 (6), 913–920 (2011)

    Google Scholar

  • 105.

    Датта, А., Ионеску, C.M., Де Кейзер, Р. и др .: Надежное и двухуровневое (нелинейное) прогнозирующее управление переключаемыми динамическими системами с неизвестными ссылками для оптимального сцепления с мокрым сцеплением.Proc. Inst. Мех. Англ. I J. Syst. Control Eng. 228 (4), 233–244 (2013)

    Google Scholar

  • 106.

    Song, X., Sun, Z .: Управление сцеплением на основе давления для автомобильных трансмиссий с помощью контроллера скользящего режима. IEEE / ASME Trans. Мехатрон. 17 (3), 534–546 (2012)

    Google Scholar

  • 107.

    Watechagit, S .: Моделирование и оценка ступенчатой ​​автоматической трансмиссии с технологией переключения сцепления.Университет штата Огайо. Диссертация (2004)

  • 108.

    Лю Ю.Г., Цинь Д.Т., Цзян Х. и др.: Стратегия управления переключением передач и экспериментальная проверка для сухих трансмиссий с двойным сцеплением. Мех. Мах. Теория 75 , 41–53 (2014)

    Google Scholar

  • 109.

    Ван Беркель, К., Хофман, Т., Серраренс, А., и др .: Быстрое и плавное управление включением сцепления для трансмиссий с двойным сцеплением. Control Eng. Практик. 22 , 57–68 (2014)

    Google Scholar

  • 110.

    Мишра, К.Д., Сринивасан, К .: Надежное нелинейное управление фазой инерции при переключении от муфты к муфте. IFAC-PapersOnLine 48 (15), 277–284 (2015)

    Google Scholar

  • 111.

    Ху, Ю.Ф., Тиан, Л., Гао, Б.З. и др.: Нелинейное управление переключением передач трансмиссий с двойным сцеплением во время фазы инерции. ISA Trans. 53 (4), 1320–1331 (2014)

    Google Scholar

  • 112.

    Лю, К.Ф., Чен, Х., Гао, Б.З. и др.: Управление переключением передач с двойным сцеплением с использованием трехступенчатого нелинейного метода. IFAC Proc. Vol. 47 (3), 5884–5889 (2014)

    Google Scholar

  • 113.

    Чжао, З.Г., Хе, Л., Чжэн, З.Х. и др .: Самонастраивающееся оптимальное управление сухой трансмиссией с двойным сцеплением (DCT) во время процесса запуска. Мех. Syst. Сигнальный процесс. 68–69 , 504–522 (2016)

    Google Scholar

  • 114.

    Ким, Д., Хан, Дж., Шин, Б. и др.: Адаптивное управление компенсацией автоматических трансмиссий транспортных средств для плавных переходных процессов на основе интеллектуального диспетчера. KSME Int. J. 15 (11), 1472–1481 (2001)

    Google Scholar

  • 115.

    Ши, Г., Донг, П., Сан, HQ и др .: Адаптивное управление процессом переключения в автоматических трансмиссиях. Int. J. Autom. Technol. 18 (1), 179–194 (2017)

    Google Scholar

  • 116.

    Дэн В., Шимада Т .: Улучшение ощущения ускорения вариатора за счет ступенчатого управления переключением передач. В: Материалы 5-го Международного симпозиума CTI, Шанхай, Китай (2016)

  • 117.

    Хеллер, С .: Новая гибридная трансмиссия BMW с восьмиступенчатой ​​гибридной трансмиссией. В: Материалы 4-го Международного симпозиума CTI, Шанхай, Китай (2015)

  • 118.

    Сюй, X.Y .: Разработка технологии трансмиссии для энергосберегающих транспортных средств и транспортных средств с новыми энергоресурсами.J. Autom. Saf. Энергетика 8 (4), 323–332 (2017)

    Google Scholar

  • 119.

    Майзель Дж .: Аналитическая основа для трансмиссии Toyota Prius THS-II в сравнении с мощной параллельной гибридно-электрической трансмиссией. Технический документ SAE 2006-01-0666 (2006)

  • 120.

    Сузуки Ю., Нишимин А., Баба С. и др .: Разработка новой гибридной трансмиссии с подзарядкой от двигателя для автомобилей компактного класса. Технический документ SAE 2017-01-1151 (2017)

  • 121.

    Cesiel, D., Zhu, C .: Система зарядки Voltec нового поколения. Технический документ SAE 2016-01-1229 (2016)

  • 122.

    Шен, Д.Ф., Ван, К., Ю, Х.С. и др .: Исследование стратегии управления энергопотреблением для комбинированного гибридного электромобиля с разделением мощности. Автомат. Англ. 39 (1), 15–22 (2017)

    Google Scholar

  • 123.

    Иноуэ, М., Такамацу, Х., Огами, М. и др .: Двигатель новой конструкции для полностью гибридного электромобиля.SAE Techical Paper 2016-01-1225 (2016)

  • 124.

    Ленг, Х.Х., Ге, Х.Л., Сан, Дж. И др .: Подключаемая гибридная электрическая система SAIC Roewe 550. Sci. Technol. Ред. 34 (6), 90–97 (2016)

    Google Scholar

  • 125.

    Хуанг, Й., Ван, Х., Хаджепур, А .: Модель прогнозирующего управления стратегиями управления мощностью для HEV: обзор. J. Источники энергии 341 , 91–106 (2017)

    Google Scholar

  • 126.

    Zhuang, W., Zhang, X., Li, D .: Дизайн карты переключения режимов и интегрированное управление энергопотреблением многомодового гибридного электромобиля. Прил. Энергетика 204 , 476–488 (2017)

    Google Scholar

  • 127.

    Гао, Ю., Эхсани, М .: Разработка и методология управления подключаемыми гибридными электромобилями. IEEE Trans. Industr. Электрон. 57 (2), 633–640 (2010)

    Google Scholar

  • 128.

    Сомаяджула, Д., Мейнц, А., Фирдоуси, М .: Разработка эффективных гибридных электромобилей. IEEE Veh. Technol. Mag. 4 (2), 65–72 (2009)

    Google Scholar

  • 129.

    Сюй, X.Y., Ву, X.X., Джордан, М. и др .: Скоординированное управление запуском двигателя одномоторных гибридных электромобилей P2 с учетом различных дорожных ситуаций. Энергия 11 (1), 207–229 (2018)

    Google Scholar

  • 130.

    Янг, К., Цзяо, X.H., Ли, Л. и др .: Надежный H
    Система управления переходом в иерархический режим на основе управления для подключаемого гибридного электромобиля. Мех. Syst. Сигнальный процесс. 99 , 326–344 (2018)

    Google Scholar

  • 131.

    Чен, Л., Си, Г., Сан, Дж .: Управление координацией крутящего момента во время перехода между режимами для последовательно-параллельного гибридного электромобиля. IEEE Trans. Veh. Technol. 61 (7), 2936–2949 (2012)

    Google Scholar

  • 132.

    Чжао, З.Г., Лей, Д., Чен, Дж. И др .: Оптимальное управление переходом между режимами для полноприводного гибридного электромобиля с сухой трансмиссией с двойным сцеплением. Мех. Syst. Сигнальный процесс. 105 , 68–89 (2018)

    Google Scholar

  • 133.

    Кум, Д .: Управление запуском двигателя для оптимальной управляемости параллельных гибридных электромобилей.J. Dyn. Syst. Измер. Contr. 135 (2), 450–472 (2013)

    Google Scholar

  • 134.

    Йошиока, Т., Сугита, Х .: Технология снижения шума и вибрации при разработке гибридных транспортных средств. Технический документ SAE 2001-01-1415 (2001)

  • 135.

    Ван, К., Чжао, З., Чжан, Т. и др .: Координированное управление переходом режима для составного гибридного автомобиля с разделением мощности. Мех. Syst. Сигнальный процесс. 87 , 192–205 (2017)

    Google Scholar

  • 136.

    Зенг, X., Ян, Н., Ван, Дж. И др .: Стратегия динамического управления координацией на основе прогнозной модели для гибридных электрических автобусов с разделением мощности. Мех. Syst. Сигнальный процесс. 60–61 , 785–798 (2015)

    Google Scholar

  • 137.

    Эхсани, М., Гао, Ю., Эмади, А .: Современные электрические, гибридные электрические транспортные средства и транспортные средства на топливных элементах: основы, теория и дизайн. CRC Press, Бока-Ратон (2005)

    Google Scholar

  • 138.

    Лю Дж., Анвар М., Чианг П. и др.: Дизайн силовой установки Chevrolet Bolt EV. SAE Int. J. Altern. Силовые агрегаты 5 (1), 79–86 (2016)

    Google Scholar

  • 139.

    Шарр, С., Валенсик, Б., Кеттелер, К.Х. и др .: Первые результаты вождения и тестирования привода электромобиля ZF EVD1. В: Proceedings of 2013 T / M Symposium, Suzhou, China (2013)

  • 140.

    Ruan, J.G., Walker, P.D., Чжан, Н. и др .: Исследование гибридной системы накопления энергии в многоскоростном электромобиле. Энергетика 140 (1), 291–306 (2017)

    Google Scholar

  • 141.

    Сорниотти А., Субраманян С., Тернер А. и др .: Выбор оптимальной компоновки коробки передач для электромобиля. SAE Int. J. Двигатели 4 (1), 1267–1280 (2011)

    Google Scholar

  • 142.

    Ву, X.X., Донг, П., Сюй, X.Y. и др .: Энергосбережение электромобилей за счет применения многоскоростных трансмиссий. В: Материалы Международной конференции по автомобильной инженерии, машиностроению и электротехнике, Гонконг, Китай, стр. 15–22 (2017)

  • 143.

    Гао, Б., Лян, К., Сян, Ю., и др. др .: Оптимизация передаточного числа и управление переключением 2-скоростной I-AMT в электромобиле. Мех. Syst. Сигнальный процесс. 50–51 , 615–631 (2015)

    Google Scholar

  • 144.

    Ким Ю., Ким Х., Ли И. и др.: Контроль скорости для уменьшения толчков при переключении передач в электромобилях с двухскоростным AMT. J. Power Electron. 16 (4), 1355–1366 (2016)

    Google Scholar

  • 145.

    Чжоу, X., Уокер, П.Д., Чжан, Н. и др .: Численное и экспериментальное исследование тормозящего момента в двухскоростной коробке передач с двойным сцеплением. Мех. Мах. Теория 79 , 46–63 (2014)

    Google Scholar

  • 146.

    Кэмпбелл, Б., Померло, М., Говиндсвами, К. и др.: Интегрированные электрические приводы с двумя скоростями. В: Материалы 12-го Международного симпозиума CTI, Мичиган, США (2018)

  • 147.

    Берг, М., Рейманн, В., Восс, Б.: DrivePacEV80 — высокоинтегрируемый электрический привод для электромобилей. В: Proceedings of 3rd Aachen Colloquium China Automobile and Engine Technology, Пекин, Китай, стр. 1–32 (2013)

  • 148.

    Chen, Z.F., Liu, Y.F., Fu, Y.X.и др.: Управление повышением передачи с ограничением крутящего момента двигателя в электромобилях с автоматическими трансмиссиями. Proc. Inst. Мех. Англ. D J. Autom. Англ. 230 (1), 18–36 (2016)

    Google Scholar

  • 149.

    Хе, Х., Чжун, Х., Ниу, М .: Гибридизация трансмиссии с электрической осью. В: Материалы 4-го симпозиума CTI, Шанхай, Китай (2015)

  • 150.

    Фанг, С.Н., Сонг, Дж., Сонг, Х.Дж. и др .: Разработка и управление новой двухскоростной непрерывной механической трансмиссией. для электромобилей.Мех. Syst. Сигнальный процесс. 75 , 473–493 (2016)

    Google Scholar

  • 151.

    Сорниотти А., Холдсток Т., Пилоне Г.Л. и др.: Анализ и моделирование методологии переключения передач для новой двухскоростной трансмиссии для электрических силовых агрегатов с центральным двигателем. Proc. Inst. Мех. Англ. D J. Autom. Англ. 226 (7), 915–929 (2012)

    Google Scholar

  • 152.

    Yuan, Y., Wu, G., He, X., et al .: Разработка трансмиссии электромобилей в Китае. В: Материалы Международного симпозиума ASME / ISCIE 2012 по гибкой автоматизации, Сент-Луис, США, стр. 597–603 (2012)

  • 153.

    Чен, X., Гу, К., Инь, Дж., И др. др .: Обзор интеграции шасси электромобиля с распределенным приводом. В: Proceedings of Transportation Electrification Asia-Pacific, Пекин, Китай, стр. 1–5 (2014)

  • 154.

    Переосмысление транспортных средств на новой энергии: исследовательские инновации в Университете Тунцзи (в США) (2017).http://www.sciencemag.org/collections/reimagining-new-energy-vehicles-research-innovations-tongji-university. По состоянию на 1 июня 2018 г.

  • 155.

    Новеллис, Л.Д., Сорниотти, А., Грубер, П. и др .: Сравнение методов управления с обратной связью для управления вектором крутящего момента полностью электрических транспортных средств. IEEE Trans. Veh. Technol. 63 (8), 3612–3623 (2014)

    Google Scholar

  • 156.

    Фаллах, С., Хаджепур, А., Фидан, Б.и др .: Оптимальное векторизация крутящего момента транспортного средства с использованием обратной связи по производной состояния и линейного матричного неравенства IEEE Trans. Veh. Technol. 62 (4), 1540–1552 (2013)

    Google Scholar

  • 157.

    Джалали, М., Хашеми, Э., Хаджепур, А. и др .: Модель прогнозирующего контроля опрокидывания транспортного средства с экспериментальной проверкой. Control Eng. Практик. 77 (1), 95–108 (2018)

    Google Scholar

  • 158.

    Шуай, З., Чжан, Х., Ван, Дж. И др .: Управление боковым движением для четырехколесных электромобилей с независимым приводом с использованием оптимального распределения крутящего момента и динамического планирования приоритетов сообщений. Control Eng. Практик. 24 (1), 55–66 (2014)

    Google Scholar

  • 159.

    Шуай, З., Чжан, Х., Ван, Дж. И др.: Комбинированное управление полноприводными электромобилями с независимым приводом через AFS и DYC по сети CAN с изменяющимися во времени задержками.IEEE Trans. Veh. Technol. 63 (2), 591–602 (2014)

    Google Scholar

  • 160.

    Инь, Г., Ван, Р., Ван, Дж .: Надежное управление четырехколесными автономными наземными электромобилями с помощью внешней генерации момента рыскания. Int. J. Automot. Technol. 16 (5), 839–847 (2015)

    Google Scholar

  • 161.

    Wang, R., Zhang, H., Wang, J .: Линейный отказоустойчивый контроллер, основанный на изменении параметров, для класса нелинейных систем с перегрузкой, применяемых в электромобилях.IET Control Theory Appl. 8 (9), 705–717 (2014)

    MathSciNet

    Google Scholar

  • 162.

    Wang, R., Zhang, H., Wang, J .: Конструкция контроллера линейного изменения параметров для четырехколесных электромобилей с независимым приводом и активными системами рулевого управления. IEEE Trans. Control Syst. Technol. 22 (4), 1281–1296 (2014)

    Google Scholar

  • 163.

    Чен, Й., Ван, Дж .: Быстрое и глобальное оптимальное энергосберегающее распределение управления с приложениями для сверхуправляемых наземных электромобилей. IEEE Trans. Control Syst. Technol. 20 (5), 1202–1211 (2012)

    Google Scholar

  • 164.

    Чен, Й., Ван, Дж .: Разработка и оценка электрических дифференциалов для наземных электромобилей с избыточным приводом с четырьмя независимыми колесными двигателями. IEEE Trans. Veh. Technol. 61 (4), 1534–1542 (2012)

    Google Scholar

  • 165.

    Хосравани, С., Касаэзаде, А., Хаджепур, А., и др .: Управление транспортным средством на основе вектора крутящего момента, устойчивое к неопределенностям водителя. IEEE Trans. Veh. Technol. 64 (8), 3359–3367 (2015)

    Google Scholar

  • 166.

    Чен, X., Инь, Дж., Ван, В. и др .: Подходы к уменьшению отрицательного воздействия большой неподрессоренной массы электромобилей с боковым приводом на колеса. J. Adv. Мех. Des. Syst. Manuf. 10 (4), 1–17 (2016)

    Google Scholar

  • 167.

    Ван, Р., Цзин, Х., Ян, Ф. и др .: Оптимизация и конечная частота H
    Управление активной подвеской в ​​наземных электромобилях с приводом от колесных двигателей. J. Franklin Inst. 352 (2), 468–484 (2015)

    MathSciNet
    МАТЕМАТИКА

    Google Scholar

  • 168.

    Сакаи, С., Садо, Х., Хори, Й .: Новый метод предотвращения заноса для электромобиля с 4 независимо управляемыми колесными двигателями.В: Proceedings of IEEE International Symposium on Industrial Electronics, Bled, Slovenia, pp. 934–939 (1999)

  • 169.

    Sakai, SI, Sado, H., Hori, Y .: Управление движением в электромобиле с четыре независимо приводимых в колеса мотора. IEEE / ASME Trans. Мехатрон. 4 (1), 9–16 (1999)

    Google Scholar

  • 170.

    Ван, Р., Чен, Ю., Фенг, Д., и др.: Разработка и определение характеристик наземного электрического транспортного средства с независимо приводимыми в действие двигателями в колесах.J. Источники энергии 196 (8), 3962–3971 (2011)

    Google Scholar

  • 171.

    Чжан, Г., Чжан, Х., Ван, Дж. И др .: Идентификация типа неисправности и оценка неисправности активной системы рулевого управления электромобиля в нормальных условиях движения. Proc. Inst. Мех. Англ. D J. Autom. Англ. 231 (12), 1679–1692 (2017)

    Google Scholar

  • 172.

    Чжан Х., Чжан, Г., Ван, Дж .: H
    Дизайн наблюдателя для систем LPV с неопределенными измерениями переменных планирования: применение к наземному электромобилю. IEEE / ASME Trans. Мехатрон. 21 (3), 1659–1670 (2016)

    Google Scholar

  • 173.

    Чжан, Х., Чжан, Г., Ван, Дж .: Оценка угла бокового скольжения наземного электромобиля с помощью конечной частоты H
    подход.IEEE Trans. Трансп. Electrif. 2 (2), 200–209 (2016)

    Google Scholar

  • 174.

    Годжиа, Т., Сорниотти, А., Новеллис, Л.Д., и др .: Интегральный скользящий режим для управления вектором крутящего момента полностью электрических транспортных средств: теоретический дизайн и экспериментальная оценка. IEEE Trans. Veh. Technol. 64 (5), 1701–1715 (2015)

    Google Scholar

  • 175.

    Новеллис, Л.Д., Сорниотти, А., Грубер, П. и др.: Прямое управление моментом рыскания, приводимое в действие с помощью электрических трансмиссий и фрикционных тормозов: теоретический дизайн и экспериментальная оценка. Мехатроника 26 , 1–15 (2015)

    Google Scholar

  • 176.

    Ван, Й.Ф., Фудзимото, Х., Хара, С .: Распределение движущей силы и управление для электромобилей с четырьмя колесными двигателями: пример ускорения на поверхностях с разделенным трением. IEEE Trans.Industr. Электрон. 4 (64), 3380–3388 (2017)

    Google Scholar

  • 177.

    Ху, Дж. С., Ван, Ю., Фудзимото, Х. и др .: Надежный контроль устойчивости к рысканью для электромобилей с колесными двигателями. IEEE / ASME Trans. Мехатрон. 22 (3), 1360–1370 (2017)

    Google Scholar

  • 178.

    Ni, J., Hu, J., Xiang, C .: Управление огибающей для четырехколесного автономного наземного транспортного средства с независимым приводом посредством интегрированного управления AFS / DYC.IEEE Trans. Veh. Technol. 66 (11), 9712–9726 (2017)

    Google Scholar

  • 179.

    Ni, J., Hu, J., Xiang, C .: Конструкция и реализация транспортного средства с конфигурацией управления на электромобиле X-by-wire. IEEE Trans. Veh. Technol. 67 (5), 3755–3766 (2018)

    Google Scholar

  • 180.

    Чжу, Х., Ю, З., Сюн, Л. и др .: Стратегия управления антиблокировочной тормозной системой для полноприводных электромобилей, основанная на управлении изменяемой структурой.Технический документ SAE 2013-01-0717 (2013)

  • 181.

    Ленг, Б., Сюн, Л., Цзинь, К. и др .: Управление рулевым управлением с дифференциальным приводом для электромобиля с приводом на колеса. SAE Int. J. Passeng. Автомобили Электрон. Электр. Syst. 8 (2), 433–441 (2015)

    Google Scholar

  • В чем разница между редукторными приводами и приводами с прямым приводом?

    Загрузите эту статью в формате PDF.

    Развитие робототехники ускоряется в наши дни, поскольку компании ищут способы создания новых решений повседневных проблем.Роботы становятся умнее благодаря процессам обучения искусственного интеллекта (ИИ), более динамичными в движении благодаря дизайну и более эффективными в промышленных приложениях. Тем не менее, приводы, кажется, упускают из виду, когда дело доходит до инноваций.

    Основы приводов

    Приводы — это компонент, ответственный за обеспечение движения и прочности суставов и осей машины, например робота. Ключевым фактором в работе машины является управляющий сигнал и подводимая мощность для облегчения движения.Однако вам также необходимо преобразовать мощность двигателя в полезную скорость и крутящий момент. Подумайте о шестеренках на велосипеде. Ваша нога может быть недостаточно сильной, чтобы управлять колесом велосипеда напрямую. Шестерни используются для изменения крутящего момента, необходимого для привода колеса.

    То же самое и с роботизированными исполнительными механизмами, в которых традиционная комбинация двигатель / редуктор функционирует вместе, чтобы преобразовать более низкий выходной крутящий момент двигателя для достижения мощного движения в манипуляторе робота с приемлемой скоростью. Более сложная система передач (т.е., чем выше передаточное число или больше ступеней редуктора), что обычно требуется для приложений с более высоким крутящим моментом, тем больше люфт в системе трансмиссии. Люфт повлияет на точность робота и в крайних случаях может даже повлиять на безопасность.

    Люфт — это «провисание» в системе, также называемое «люфтом» в шестернях (рис. 1). Например, при перемещении рулевого колеса старой машины влево и вправо, когда машина выключена и отсутствует гидроусилитель руля, вы можете почувствовать некоторый «люфт» или люфт в системе, когда рулевое колесо движется, а шины не движутся. повернуть.Это связано с тем, что вдоль системы рулевого управления множество разъемов с небольшими допустимыми значениями люфта в сумме приводят к ощутимому общему большому люфту в системе.

    1. Люфт — это «провисание» в системе, также называемое «люфтом» в шестернях.

    Исключить люфт в системе передач очень сложно, а в многоступенчатых редукторах — практически невозможно. Шестерни должны изготавливаться с очень плотной посадкой или допуском, что может быть дорогостоящим. Кроме того, жесткие допуски приводят к высокому трению, или необходим механизм, чтобы шестерни оставались плотно включенными в пределах их диапазона крутящего момента.

    Гибкие зубчатые передачи, такие как зубчатая передача с волновой деформацией, предлагают другой метод устранения люфта, поскольку редуктор имеет некоторые гибкие компоненты, которые компенсируют «провисание». К сожалению, это может привести к потенциальной хрупкости и очень затрудняет движение назад — управление устройством задним ходом.

    Приводы

    с редуктором подходят для низкоскоростных применений, поскольку они позволяют двигателям работать на высоких скоростях и с меньшим крутящим моментом при оптимальной эффективности. Это также позволяет системе использовать обычные сегодня двигатели с относительно низким крутящим моментом (более слабые).

    Самым основным типом шестерни является прямозубая шестерня, в которой зубья внутри шестерни будут входить в полный контакт при каждом зацеплении, вызывая большое количество шума и приводя к износу и часто к необходимости смазки. Проблема шума привела к созданию косозубой шестерни, которая позволяет зубьям входить в зацепление более плавно. Когда мы меняем передаточное число для увеличения крутящего момента, это происходит за счет снижения скорости. Это связано с тем, что частота вращения двигателя, приводящего в движение коробку передач, снижена для увеличения крутящего момента.Вот почему редукторы также часто называют редукторами.

    Привод с прямым приводом

    В приводе с прямым приводом традиционный редуктор удален. Однако для этого требуется, чтобы двигатель в приводе с прямым приводом был способен создавать достаточный собственный крутящий момент при приемлемой скорости (то есть не в тысячи оборотов в минуту, а в несколько сотен оборотов в минуту). Преимущества прямого привода многочисленны, и производители роботов давно мечтают об этом.

    Прямой привод не имеет люфта из-за отсутствия шестерен; жесткость на кручение обеспечивает очень высокую точность.Прямой привод также полностью поддерживает обратное движение, что дает большие преимущества для совместных роботов, которые должны перемещаться и позиционироваться людьми. Кроме того, высокая устойчивость к ударам делает их очень подходящими для экзоскелетов и шагающих роботов, где удар при ходьбе может повредить шестерни.

    2. Приводы с прямым приводом, такие как LiveDrive, показанные здесь, полностью устраняют необходимость в зубчатой ​​передаче, что приводит к снижению общего веса и меньшему количеству движущихся частей. Эти компоненты могут быть произведены по невысокой цене — более 50% от стоимости традиционного приводного механизма с зубчатой ​​передачей.

    Кроме того, отсутствие коробки передач означает отсутствие инерции, что является большим преимуществом с точки зрения безопасности роботов и машин. Если автомобиль начинает катиться с холма, накопленная инерция затрудняет быструю остановку. То же самое происходит с коробкой передач: если у вас есть двигатель, который работает со скоростью 4000 об / мин, и коробка передач с передаточным числом 100: 1, мгновенная остановка невозможна. Коробке передач нужно время, чтобы замедлиться.

    Преимущества также распространяются на внедрение робототехнических решений.Люфт в зубчатых системах часто требует сложного программирования, чтобы помочь в повышении точности, чтобы компенсировать «люфт» в зубчатых колесах. Это требует времени и часто требует постоянной калибровки. Шестерни также повреждаются, и их необходимо заменять или смазывать, что увеличивает расходы на техническое обслуживание.

    Другое преимущество — стоимость. Без коробки передач привод с прямым приводом на самом деле представляет собой просто двигатель, а не комбинацию двигатель / коробка передач. Это дает немедленную экономию средств. Поскольку стоимость срабатывания снижается, это приближает робототехнику к точке перегиба.Это ускорит внедрение роботов не только для промышленного использования, но и для потребительского и не производственного использования, например для здравоохранения.

    В приводах используются новые свойства, позволяющие роботизированной конструкции работать без шестерен. Особенности, которые следует искать в прямом приводе:

    • Усиленные магниты: ищите уникальные конфигурации, которые увеличивают эффективную силу стандартных постоянных магнитов.
    • Структурно-магнитная синергия: огромные магнитные силы, создаваемые усиленным магнитом, разрушили бы конструкцию обычного двигателя.Этот новый уровень магнитных характеристик требует механической конструкции, достаточно прочной, чтобы выдерживать возникающие силы, но при этом достаточно легкой, чтобы обеспечить наивысшее отношение крутящего момента к массе
    • Термодинамическая аномалия: Тепло является ограничивающим фактором в любом электромагнитном устройстве. Комбинация первых двух основополагающих открытий обеспечивает тонкую и легкую структуру, которая позволяет отводить тепло. Эффективный отвод тепла позволяет вашему приводу работать с гораздо более высокими уровнями мощности, чем обычный двигатель.

    Genesis Robotics предлагает пример этой безредукторной конструкции с прямым приводом под названием «LiveDrive», который воплощает в себе эти три основополагающих открытия (рис. 2).

    Итак, в чем разница между редуктором и прямым приводом?

    Как отмечалось выше, основные различия между этими двумя системами заключаются в их стоимости и производительности для роботов. Приводы с прямым приводом, такие как LiveDrive, полностью устраняют необходимость в зубчатой ​​передаче, что приводит к снижению общего веса и меньшему количеству движущихся частей.Это компоненты, которые можно производить по низкой цене — более чем на 50% дешевле, чем у традиционных приводов с зубчатой ​​передачей.

    Отсутствие зубчатой ​​передачи также устраняет люфт, который существенно влияет на точность. Решения с прямым приводом могут обеспечить высочайший уровень точности, точности и жесткости на кручение на рынке. Еще одно ключевое усовершенствование — возможность обратного привода привода. Они также могут обеспечить эту производительность на гораздо более высоких скоростях, поскольку понижающие характеристики коробки передач также удалены из системы.

    Технология приводов остается неизменной более 50 лет. Отсутствие точности в движении и громоздкий дизайн сдерживают их потенциал. Отсутствие реинжиниринга системы привода, помимо снижения стоимости и сложности срабатывания привода, замедлило внедрение роботов на потребительских рынках. Искоренение коробки передач и постоянное развитие технологий приводов с прямым приводом решают эти проблемы, что, в свою очередь, улучшает производительность и доступность рынка.

    Майк Хилтон — генеральный директор Genesis Robotics.

    Разница между автоматической коробкой передач, механической коробкой передач и вариатором: какая коробка передач должна быть у вашего следующего автомобиля?

    Механическая коробка передач делает вашу поездку более увлекательной и увлекательной, а автоматическая коробка передач дает вам спокойствие в движении. В мире наблюдается рост продаж автомобилей с автоматической коробкой передач.

    Трансмиссия или коробка передач выполняет основную функцию распределения мощности, вырабатываемой двигателем, для приведения в движение колес. Для этого существуют разные типы коробок передач, и, хотя механический процесс переключения передач одинаков, процедуры их замены различаются в зависимости от типа трансмиссии.За небольшим исключением бесступенчатой ​​трансмиссии (CVT), коробка передач обычно выполняется в металлическом корпусе, который содержит ряд рычагов переключения передач; отсюда и название «коробка передач». Каждая передача имеет определенное передаточное число, чтобы отличать вращение колес от вращения двигателя. Сила, которая вызывает вращение внутри двигателя, обычно известное как крутящий момент, поступает в трансмиссию через вал двигателя и проходит через шестерни, прежде чем выйти через выходной вал. Окончательный процесс достижения крутящего момента на колесах зависит от того, находится ли двигатель на передней, средней или задней части, а также от того, является ли он передним, задним или полноприводным.Механическая, автоматическая и вариатор — популярные и распространенные типы коробок передач, доступных в наши дни на автомобилях. Но что лучше покупать в индийском трафике? Действительно ли пробег вашего автомобиля зависит от трансмиссии? Мы постараемся ответить на эти вопросы ниже.

    Механическая коробка передач:

    Ручная коробка передач или механическая коробка передач — наиболее часто используемый тип трансмиссии во всем мире. Большинство нынешних водителей во всем мире по крайней мере научились бы вождению с механической коробкой передач, прежде чем переходить на автоматическое переключение передач.На старых классических автомобилях, таких как Fiat Padmini Premier или даже Ambassador, был виден переключатель передач чуть ниже рулевой колонки, но в любом современном автомобиле рычаг переключения передач расположен вертикально на центральной консоли автомобиля и соединен с трансмиссией через связь. Сцепление играет решающую роль между двигателем и трансмиссией, обеспечивая необходимую мощность для колес. Управлять автомобилем с механической коробкой передач всегда веселее и интерактивнее. Однако, учитывая ситуацию с дорожным движением в сельской местности, механическая коробка передач может вас расстроить и раздражать.Также говорят, что если вы научитесь управлять автомобилем с механической коробкой передач, вам будет проще управлять автомобилем с любой коробкой передач. Трехступенчатая механическая коробка передач была обычным явлением в автомобилях в 1940-х годах, в автомобили добавлялось больше передач, поскольку технологии совершенствовались, и автомобили начали развиваться. Автомобили с четырехступенчатой ​​коробкой передач ходили по дорогам десятилетиями, затем пятиступенчатая, а теперь шестиступенчатая коробки передач становятся обычным явлением. Автомобили премиум-класса, такие как Chevrolet Corvette, Porsche 911, действительно оснащены семиступенчатой ​​механической коробкой передач.

    Автоматическая коробка передач:
    Когда-то считавшаяся роскошью для автомобилей, трансмиссия с автоматическим переключением теперь стала широко распространенным товаром, и в будущем покупатели предпочтут автоматическую коробку передач, а не механическую, для облегчения вождения.На автомобилях есть два разных типа автоматических коробок передач. Обычная автоматическая коробка передач соединена с двигателем через гидротрансформатор, который помогает переключать рычаг переключения передач без вмешательства водителя, а второй — это коробка передач с двойным переключением (DSG), которая представляет собой трансмиссию два в одном, в которой два вала с электронным управлением управлять выбором передачи. Большинство автомобилей группы Volkswagen, таких как Volkswagen Polo, Volkswagen Vento, Skoda Octavia, Skoda Superb, Audi Q7 и т. Д., Поставляются с этой коробкой передач DSG.Процесс переключения передач осуществляется гидравлически или электронно путем контроля важных параметров, таких как скорость, положение дроссельной заслонки и скорость вращения двигателя. В случае коробки передач AMT (автоматическая ручная трансмиссия) имеется датчик с электронным контролем, который при переключении на более высокую или понижающую передачи переключает передачи в зависимости от частоты вращения двигателя. В большинстве автомобилей с AMT передачи также можно переключать вручную с помощью рычагов переключения передач на рычаге переключения передач. Автомобили с автоматической коробкой передач имеют две педали, что исключает возможность заглохнуть двигателем, учитывая его конфигурацию.

    Миф о том, что автомобиль с автоматической коробкой передач менее экономичен, чем механический, не соответствует действительности. Современные электронные технологии позволили автомобилю с автоматической коробкой передач расходовать почти такой же километраж, как и автомобиль с ручным приводом. Во многих случаях автомобили с автоматической коробкой передач, как правило, лучше работают по пробегу, поскольку в коробке передач нет вмешательства человека. В мировом масштабе четырехступенчатая автоматическая коробка передач прослужила автомобили дольше всех. Сегодня обычным явлением является шестиступенчатая, семи- и восьмиступенчатая автоматика. ZF представила 9-ступенчатую коробку передач для многих автомобилей премиум-класса.Чем больше передач, тем больше ускорение и повышается топливная экономичность.

    Коробка передач CVT:

    Другой тип — бесступенчатая трансмиссия или широко известная как коробка передач CVT. Хотя многие впервые пользователи CVT находят эту коробку передач очень медленной при переключении, она также считается более плавной, чем традиционная автоматическая коробка передач. CVT опирается на систему шкивов и ремней, которая позволяет ему обеспечивать бесконечное количество передаточных чисел. Он также встречается в автоматических самокатах, квадроциклах и снегоходах.CVT также помогает сократить расход топлива автомобиля, что делает его основной причиной для производителей гибридных автомобилей устанавливать вариатор на гибридный автомобиль. Чтобы улучшить ускорение, вариатор часто сочетается с подрулевыми переключателями, которые помогают в быстром переключении передач. Большинство автомобилей Honda в Индии оснащаются коробкой передач CVT, хэтчбек Maruti Suzuki Baleno также получает коробку передач CVT.

    Какая коробка передач вам подходит?

    Тип автомобиля и стиль вождения — это два фактора, которые следует учитывать перед покупкой следующего автомобиля.Если динамика вождения не входит в список обязательных требований вашего автомобиля, и вам нужен автомобиль, который позволит вам меньше уставать в пробке, вам следует подумать о выборе вариатора или автоматической коробки передач. Однако, если вы впервые водите машину, учитесь водить машину или автолюбитель, который хочет большего взаимодействия между водителем и автомобилем, то вам подойдет автомобиль с механической коробкой передач. Во всем мире растет тенденция владеть автомобилями с автоматической коробкой передач. В Индии большинство автоматических вариантов даже на доступных автомобилях продаются только на лучших вариантах.На современных автомобилях топливная экономичность практически такая же, как на автомобилях с механической коробкой передач или автоматом. Так что либо будьте спокойны в пробке, либо получите руководство, чтобы весело и увлекательно провести время за рулем.

    Получите текущие цены на акции с BSE, NSE, рынка США и последнюю чистую стоимость активов, портфель паевых инвестиционных фондов, ознакомьтесь с последними новостями IPO, наиболее успешными IPO,
    рассчитайте свой налог с помощью калькулятора подоходного налога, узнайте лидеров рынка, крупнейших проигравших и лучших фондов акционерного капитала. Поставьте нам лайк на Facebook и подпишитесь на нас в Twitter.

    вариатор или станок, робот или механика — AutoNews

    Споры о вариаторах в последнее время разгорелись нешуточные.Некоторые автомобилисты отдают предпочтение «механике», «автомату», некоторые специалисты утверждают, что использование вариатора наиболее эффективно при вождении. Но не все знают, что истоки происхождения такой трансмиссии, как вариатор, уходят в пятнадцатый век и их предком, как ни странно, был великий Леонардо да Винчи.

    Немногие знают истоки происхождения вариатора идут в 15 веке и был основателем великого Леонардо да Винчи

    Вариаторы появились задолго до появления «механики и гидравлической автоматики».Самые примитивные приводы с регулируемой скоростью были еще в швейных машинах XIX века или для промышленного оборудования. В середине 20 века скутеры, мотоциклы и скутеры также оснащались приводами с регулируемой скоростью. Машину повернули только в пятидесятые годы прошлого века.

    Голландская компания DAF первой применила вариатор в своей малолитражке с объемом двигателя 590 куб. См. Хотя это была новинка в автомобильном мире, но серьезного прорыва не дала. Вариатор в этой машине работал как мопед.Компания DAF в 70-х годах прошлого века продала часть серийных автомобилей знаменитой марки VOLVO.

    Шведы, в свою очередь, не стали существенно модернизировать линейку автомобилей, пришлось ставить вариатор уже на готовую модель, по сути тот же DAF. Переоборудование всей линии обойдется гораздо дороже. Со временем регулятор все-таки модернизировал свой ресурс, составивший 30 тыс. Км. Частая замена ремня привела к прекращению установки частотно-регулируемых приводов и в 80-х годах выпуск таких машин прекратился.

    После такой неудачи пальму первенства решили покорить японцы своей Subaru. Немного изменили, резиновый ремешок вариатора заменили на стальную цепь, электронику и различные датчики было чем-то немыслимым на рынке. Эта переменная прослужила намного дольше. Но производство автомобилей было настолько маленьким, что о вариаторах в принципе в мире мало кто знал.

    На протяжении многих лет вариатор старался внедрить в модели своих автомобилей известных марок

    .

    В 90-х годах на Honda HR-V устанавливали переменный с ресурсом 150 тыс. Км. Это был не только значительный прорыв, но и множество проблем, связанных с заявленным нововведением.Редко вариатор проживал и на 100 тыс. Км, а его замена обошлась вдвое дешевле автомобиля. Nissan и Audi таких проблем не испугались, предусмотрели такое программное обеспечение трансмиссии и ряд изменений. Но широких вариаций так и не получил.

    Рынок России и Европы всегда с недоверием относился к разным японским новинкам, многие до сих пор помнят Honda HR-V, у которой через месяц использования сломался ремешок на вариаторе, не рискуют быть установлены на автомобиль « кот в мешке ».Этот ресурс не только сложно освоить, но и относительно дорог в изготовлении и внедрении, тем более что четкой обратной связи не так уж и много.

    Основная проблема заключается в ремонте такого вариатора. Неправильное масло, даже с пометкой «универсальное», легко вывести вариатор из строя. Сейчас возможности диагностики и ремонта такой трансмиссии огромных и неразрешимых проблем нет. Но при этом чрезвычайно важны правила эксплуатации.

    Что лучше: вариатор или автомат, или робот, или механика?

    Вариатор, в отличие от АКПП, намного лучше в эксплуатации.Он обеспечивает большее и устойчивое ускорение, значительно снижает расход топлива, что очень важно сейчас, когда цены на топливо растут с каждым днем, срок службы двигателя значительно увеличивается. Однако когда что-то не получается. И вариатор не исключение, но его ремонт может стоить очень кругленькую сумму. Ремонт АКПП с гораздо меньшими финансовыми затратами, ибо «автомат» имеет другое обслуживание, чем вариатор, которым можно похвастаться до мая. Не все СТО могут предоставлять такие услуги.

    Автомобилисты, использующие АКПП и вариатор, предпочитают ездить спокойно, комфортно и достаточно безопасно.Механики предпочитают водителей, которые не просто передвигаются по городу из одной точки в другую, а хотят понять и почувствовать свою машину, которая одно удовольствие выжать педаль сцепления до пола, услышать рев двигателя, всем телом почувствовать нагрузка от разгона автомобиля. Любители этого драйва, смешанные с вашим автомобилем, никогда не заменят механику машины или вариатор. И плюс к этому — относительно недорогой ремонт и обслуживание «механики».

    Механики выбирают водителей, которые не просто перемещаются по городу из одной точки в другую, а хотят понять и почувствовать вашу машину

    Всем тем, кто решил испытать все нюансы езды с вариатором, необходимо четко понимать, что подержанную машину с вариатором лучше не брать.Это должна быть новая машина с гарантией. Поскольку вариатор в подержанном автомобиле проверить сложно, возможно, он практически исчерпан, ремонт такого устройства будет стоить в закупочной цене нового транспортного средства.

    Но все же есть небольшая хитрость для тех, кто рискнул купить подержанную машину с вариатором. Для этого нужно сесть и хорошенько прогреть автомобиль. Потом отъезжаем и… Именно в этот момент нам нужно понять, что происходит с машиной. Если нет рывков и посторонних шумов, значит, ресурсная переменная не сложилась.Если возникают странные шумы и резкие рывки автомобиля, то это говорит о том, что пора заменить фильтры и трансмиссионную жидкость.

    При покупке подержанного автомобиля все еще возникают проблемы с вариатором. Визуально неопытному водителю практически невозможно определить, что в машине находится под капотом: АКПП или вариатор. Потому что внешне они очень похожи, одинаковые марки: P, N, D, R.

    Чем отличается вариатор от автомата

    При выборе автомобиля задача: какой коробке передач отдать предпочтение — «автомату» или «механике».Здесь только нужно полагаться на индивидуальные предпочтения. Но выбрать автоматическую коробку передач или вариатор довольно сложно. Эти механизмы очень разные по устройству и принципам работы, но функции у них одна передача.

    В основе «автомата» лежит коробка передач и гидротрансформатор. Коробки передач вариатора не переключатели. Ведущий и ведомый шкивы, лежащие в основе этого устройства, расположены напротив друг друга и связаны между собой цепями или ремнями.

    В процессе вождения машина позволяет ощутить абсолютный комфорт.Он плавно переключает скорость, снижает износ двигателя, но есть существенное «но» топлива на «машине» выше. В этом существенное отличие вариатора от коробочного автомата.

    Компьютер, контролирующий работу вариатора, поможет плавно съехать с места, бесшумно переключая скорость, есть возможность адаптировать машину к дороге. Огромное количество скоростей. который подбирает компьютер, позволяет сэкономить на топливе. Но в случае некомпетентного и неопытного использования вариатора в автомобиле он быстро выйдет из строя и ремонт сможет сделать только дилерская компания.Такой механизм еще до конца не изучен, поэтому его выход из строя дорого обойдется владельцу.

    Каждая модель вариатора нуждается в индивидуальном масле. Какие-то «универсальные» не подходят. Механизм сразу сломается. Хотя, кто такой «автомат», нужна более частая замена масла и в довольно больших масштабах. Здесь однозначно выигрывает вариатор.

    Отличие АКПП от вариатора.

    Как «на глазок» определить вариатор или автомат так:

    • Внимательно изучите инструкцию по эксплуатации автомобиля.«Машина» обозначается как (A), а вариатор — как CVT;
    • Покупая автомобиль марки, нужно узнавать о нем как можно больше информации из разных источников. Вполне возможно, что в купленном автомобиле вариатор вообще не устанавливался;
    • Обязательно сделайте тест-драйв. Заведите машину и уезжайте. Если он переменный, рывков, рывков, шума, указателя тахометра в неподвижном состоянии нет. Если он «автоматический», то можно почувствовать значительные толчки, и рычаг переключения меняет и количество оборотов в минуту.Так что даже на слух определить не сложно;
    • В АКПП уровень масла всегда можно проверить специальным щупом. Во многих моделях частотно-регулируемых приводов такого щупа нет.

    Автомобилистам, автомобили которых оснащены регулируемыми приводами, следует часто и внимательно относиться к проверке работы агрегата. Примерно каждые 24 тысячи километров нужно проверять уровень жидкости, а каждые 30-40 тысяч километров — уровень масла. Хотя производители и заявили цифру в 60 тыс. Км, все же лучше сделать это заранее.

    Что надежнее: вариатор или автомат

    Для машин с мощным двигателем переменная не устанавливается. Итак, попав в дорогу, Вы приобретете АКПП только

    .

    Немного понимания того, как отличить переменную от машины, самое главное в процессе управления автомобилем — надежность. Ведь комфорт и легкость автомобиля не всегда являются залогом надежного и безопасного передвижения по городским улицам и за его пределами.

    Как бы не было модернизированного автомобиля, безопасность среди участников является самым важным аспектом и пренебрегать им не стоит.Если машина с АКПП попадет по асфальту на дороги, могут возникнуть трудности. На машинах с более мощным мотором вариатор в принципе не устанавливали. Тут выручает только АКПП.

    Насколько надежен вариатор от «автомата» или чем вариатор хуже автомата, который может обслуживать только индивидуальные предпочтения владельца. Если машина предназначена исключительно для города, можно выбрать вариатор, сэкономив при этом на топливе. Если машина и для города и для дальних поездок по любым трассам то только АКПП.

    Сложно выбрать коробчатую машину, вариатор или робот-коробку

    Роботизированный бокс — это «механика», управляемая компьютером. Отличие от «механики» — нет педали сцепления, а все остальное, как автомат. Иногда при переключении передач происходит небольшое «зависание». Мотор и диск сцепления в этой коробке изнашиваются через 20 тыс км

    Роботизированный бокс довольно редко встречается на рынке. Несмотря на то, что она похожа на привычную и любимую многими механику, все же ее недостатки имеют очень существенное преимущество.

    Выбирая между этими коробками, вы должны учитывать множество факторов. Те автовладельцы, которые отличаются вариативностью, почувствуют плавность и бесшумность вождения, сэкономят топливо и, из-за умеренности двигателя, меньше будут работать на ремонте вариатора.

    Владельцы АКПП будут потреблять больше масла и бензина, чтобы ощутить паузу между переключениями передач, хотя ремонт таких коробок может производиться достаточно быстро и она адаптирована под любые погодные условия.

    Владельцы АКПП и механики больше потребляют масла и бензина

    К роботизированному ящику следует использовать.Небольшие рывки в движении, имитирующие механику, сначала не до конца понятны. Очень большая нагрузка на место сцепления. Но есть весомые преимущества: экономия топлива и относительно невысокая стоимость.

    Всем, кто сталкивается с вопросом, какую машину выбрать, с какой трансмиссией, можно предложить следующее:

    • роботизированная коробка передач с двойным сцеплением для машин класса С и выше;
    • вариатор — для машин класса А, В, С, а также для езды по городу;
    • АКПП для внедорожников, чтобы лучше справляться с грязью на дороге на «автомате».

    Надо помнить, что каждая трансмиссия имеет свой ресурс и условия эксплуатации. В этом случае рекомендацию производителя игнорировать нельзя, это может привести к плачевным последствиям.

    Трансмиссия для скутера

    CVT | multibody.net

    Алессандро Блюм — [email protected] — диплом инженера-механика

    Рисунок 1. Трансмиссия Real Scooter

    Введение

    В наши дни любой самокат оснащается трансмиссией CVT.Буквально CVT означает непрерывную трансмиссию с регулируемой передачей, и на самом деле этот вид трансмиссии предлагает возможность непрерывного и автоматического изменения передаточного числа.

    Такое устройство представляет собой не что иное, как прогрессивную коробку передач, способную развивать непрерывный диапазон и, следовательно, бесконечность передаточного числа между минимальным и максимальным передаточным числом, установленным на стадии проектирования. Таким образом, изменение передаточного числа в этом случае не постепенное, а непрерывное. Это как если бы время от времени у нас были два колеса, которые сцепляются между собой, но диаметр которых непрерывно изменяется в зависимости от передаточного числа, необходимого для преодоления внешнего сопротивления, с которым сталкивается автомобиль (наклоны, колебания веса и т. на).

    Итак, давайте посмотрим, что такое вариатор для скутера: обычно вариатор для скутера состоит из двух шкивов и ремня трапециевидного типа.

    Рисунок 2. Коробка передач скутера

    в разобранном виде

    Каждый шкив состоит из двух пластин с коническим профилем, обращенных друг к другу и образующих горловину, на которой он наматывает ремень передачи. Одна из двух пластин зафиксирована, а другая может свободно перемещаться в осевом направлении. При каждом перемещении вариатора самоката происходит изменение диаметра шкива, переходящее от точки максимального приближения (больший диаметр) к точке максимального расстояния (меньший диаметр).Чтобы вызвать такое смещение в вариаторе скутера, существуют ролики, которые за счет центробежной силы движутся внутри специальных направляющих, сформированных на вариаторе скутера. Изменение диаметра ведущего шкива затем вызывает изменение передаточного числа, а затем удлинение или укорачивание ремня, который для этого воздействует на ведомый шкив, перемещая подвижную пластину, которая прижимается к неподвижной один, благодаря усилию регулирующей пружины. Изменяя как ролики, воздействующие на пластину ведущего шкива, так и жесткость пружины, которая прижимает пластины ведомого шкива, вы поймете, насколько легко изменить поведение трансмиссии.

    Цели

    Целью проекта является моделирование и симуляция трансмиссии современного скутера со средней мощностью двигателя, чтобы понять фактическую работу и роль, которую играют различные составляющие ее компоненты.

    Моделирование

    Не найдя в различных сайтах сектора 3Dcad-модель трансмиссии CVT для скутера, первым шагом было смоделировать трансмиссию с самого начала. Чтобы не делать обсуждение слишком утомительным, я не буду объяснять в подробно описать, как вы моделируете различные компоненты, составляющие трансмиссию, но я просто перечислю их, приложив их изображения.Среди различных компонентов не будет упоминаться ремень, он будет рассмотрен более подробно в приложении.

    Первым шагом было создание переднего фиксированного полушкива и вариатора скутера, которые затем прикрепляются шпонкой к ведущему валу.

    Рисунок 3. Шкив передний фиксированный

    Рисунок 4. Скутер Вариатор

    Вторым шагом вместо этого было создание фиксированного полушкива и динамометрического привода, которые затем вставляются в ведомый вал. С точки зрения моделирования важны углы наклона различных шкивов, и поэтому привод крутящего момента и неподвижная задняя часть шкива совпадают с геометрической точки зрения.

    Рисунок 5. Динамометрический ключ

    В дополнение к основным компонентам, перечисленным выше, были смоделированы ограничения пружины регулятора, оси и колеса (модель, загруженная с сайта GrabCAD), необходимых для определения низкой инерции всего транспортного средства.
    Не углубляясь в обсуждение, после сборки различных компонентов с наложением соответствующих ограничений мы получаем следующую конфигурацию:

    Рисунок 6. Общий вид трансмиссии скутера

    Симуляторы

    Сначала к ведущему валу применяется следующая переменная крутящего момента с тенденцией, аналогичной реальной двигателю:

    Рисунок7.Крутящий момент двигателя

    Как видно из раздела, посвященного моделированию, ролики не моделировались. Это связано с тем, что фактическое открытие вариатора скутера из-за центробежной силы, оказываемой роликами, моделируется простым приложением силы (действующей на вариатор скутера), которая изменяется пропорционально квадрату угловой скорости приводного вала.
    Благодаря силе трения, возникающей между ремнем и шкивами, ремень увлекает во вращение ведомый вал. Тогда основной момент — это определение ремня и регулировочной пружины, которая будет служить для противодействия открытию ведомого шкива.
    После правильного определения ремня и регулировочной пружины были выполнены различные анализы, чтобы понять, в основном, влияние угла наклона полушкивов и влияние жесткости регулировочной пружины на работу трансмиссии. Данные, полученные в результате анализа, выполненного с помощью Virtual.Lab, затем были обработаны с помощью MATLAB, получив следующие диаграммы:

    Изменяя угол наклона полушкивов, можно увидеть, как сильно влияет на переключение передач:

    Рисунок 8.Передаточное число в зависимости от угла наклона шкивов

    Как видно из диаграммы, чем меньше угол наклона полушкивов, тем круче полушкивы, тем быстрее изменяется передаточное число. Это означает, что самокат быстро перейдет из короткого передаточного числа в длинное. Совершенно очевидно, что угол наклона шкивов играет важную роль. Фактически, если изменение передаточного числа происходит слишком быстро, возникает риск не полностью использовать крутящий момент, создаваемый двигателем.Это как если бы, едя на велосипеде, мы переключаемся слишком быстро, не дожидаясь достижения соответствующей скорости, и, таким образом, чтобы увеличить скорость велосипеда, мы должны приложить крутящий момент, больший, чем тот, который мы бы применили, если бы мы вставили более короткую шестеренку.
    Также жесткость регулировочной пружины играет фундаментальную роль и сильно влияет на передаточное отношение. В этом вы можете убедиться, посмотрев на следующие две диаграммы (Рисунок 9 и Рисунок 10):

    Рисунок 9. Передаточное отношение в зависимости от жесткости пружины

    Как видно из графика, соотношение силы, прилагаемого роликами, чем жестче пружина регулятора, тем медленнее увеличивается передаточное число; не только это, но также, если пружина слишком жесткая, мы не можем достичь желаемого конечного передаточного числа.Если это произойдет, скутер никогда не достигнет желаемой конечной скорости, потому что, как если бы он всегда оставался на «короткой» передаче.
    Пружина не имеет единственной цели — противодействовать открытию ведомых шкивов, но она также служит для получения правильной силы трения между ремнем и шкивами для передачи движения. В любом случае хорошее правило — использовать более мягкую контрастную пружину, которая способна передавать движение. Чрезмерно жесткая пружина на самом деле не только вызывает упомянутые выше эффекты, но также поглощает мощность двигателя, которая сжимается, таким образом получая мощность на колесо меньшую, чем та, которую можно было бы получить путем соответствующей калибровки трансмиссии.Однако ясно, что выбор регулировочной пружины тесно связан с выбором веса роликов, поэтому калибровка трансмиссии — совсем не простая вещь.
    ПРИМЕЧАНИЕ: Как видно на рисунке 9 (но также и на других рисунках), изначально наблюдается небольшое колебание передаточного числа. Это связано с тем, что вначале ремень натянут неправильно. Чтобы решить эту проблему, он должен знать реальный модуль упругости ремня и начальное статическое натяжение, которое возникает при прикреплении ремня, о которых у нас, к сожалению, нет данных.

    Из сделанных соображений ясно, что при равенстве силы, прилагаемой роликами, более жесткая пружина регулятора, чем меньше вы открываете ведомый шкив, и это видно из графика ниже (рисунок 10).

    Рисунок 10. Смещение крутящего момента в зависимости от жесткости пружины

    В заключение был также проведен анализ, чтобы увидеть, как передаточное число изменяется в зависимости от крутящего момента двигателя, запрашиваемого пилотом с дроссельной заслонкой.

    Рисунок 11.Передаточное число в зависимости от крутящего момента двигателя

    Из графика (Рисунок 11) видно, как в то же время чем больше мы поворачиваем дроссельную заслонку, и, следовательно, чем больше крутящий момент требуется двигателю, тем выше достигается передаточное число.

    Выводы

    Проект дает четкое представление о функционировании бесступенчатой ​​трансмиссии для скутеров, показывая важность определенных компонентов для работы. Из анализа, выполненного с помощью Virtual.Lab, понятно, что, установив конфигурацию трансмиссии (углы и диаметры шкивов), чтобы получить правильную калибровку трансмиссии, способную использовать полную мощность, выдаваемую двигателем, у вас есть найти правильный компромисс между весом роликов и жесткостью регулировочной пружины; так что эти две вещи не независимы друг от друга.

    Самой сложной частью, несомненно, было определение ремня еще и потому, что по этой теме онлайн-справка предлагает очень мало объяснений. Вот почему в приложении будет более подробно объяснено, как вы определяете пояс, в надежде, что это будет кому-то полезно.

    Приложение

    Определение ремня

    Перед определением ремня необходимо определить шкивы. На самом деле два шкива (ведущий и ведомый) состоят из двух полушкивов, один фиксированный, а другой, который может скользить в осевом направлении вдоль двух валов, позволяя ремню двигаться в радиальном направлении и, таким образом, изменять передаточное отношение.
    Для определения шкива корпуса щелкните:

    ВСТАВКА -> СИСТЕМЫ ТРАНСМИССИИ -> ШКИВ ДЛЯ ГОСУДАРСТВЕННОГО УРАВНЕНИЯ

    На этом этапе вы увидите следующее окно (Рисунок 12):

    Рисунок 12. Шкив State Equation

    Под голосовые насадки мы должны вставить два корпуса, составляющие шкив. Фактически, в нашем случае шкив состоит из двух полушкивов, один из которых неподвижен, а другой может скользить в осевом направлении.
    На этом этапе нам нужно определить различные геометрические параметры, которые определяют шкив и которые очень хорошо объяснены в онлайн-справке, и я не буду вдаваться в подробности.
    После того, как вы определили два шкива и правильно их пронумеровали (см. «Номер шкива» в интерактивной справке), переходите к определению самого ремня.

    Во-первых, пояс — это аналитический пояс, поэтому моделировать тело не нужно.
    Для определения ремня необходимо щелкнуть по:

    ВСТАВКА -> СИСТЕМЫ ТРАНСМИССИИ -> ПОЯС УРАВНЕНИЯ

    Откроется следующее окно (Рисунок 13):

    Рисунок 13. Пояс уравнения состояния

    Во-первых, для правильной работы ремня необходимо определить загадочное «базовое тело».Поскольку пояс — аналитическая сущность, у него нет «тела», которое бы его представляло. Под «базовым телом» Virtual.Lab означает систему отсчета, в которой определена лента, при этом убедитесь, что плоскость XY является рабочей плоскостью ленты, как показано на рисунке 13.
    После определения «базового тела» необходимо мы указываем шкивы, по которым проходит ремень. Следующим шагом является определение различных параметров, которые подробно описаны в интерактивной справке. Не все параметры должны быть введены: очень важны масса, модуль упругости, коэффициент демпфирования, инерция и площадь поперечного сечения ремня.Мы также добавили параметр «Длина», который указывает длину ремня в статических условиях. В справке указано, что программа автоматически вычисляет длину, и это абсолютно верно, но мы предпочли определить начальную длину, чтобы лучше контролировать относительное удлинение ремня, а затем отрегулировать модуль упругости (физические данные нам недоступны). .
    В заключении:

    1. важно определить правильную рабочую плоскость ремня
    2. важно правильно пронумеровать шкивы, на которых движется ремень (по часовой стрелке, начиная с ведущего шкива).

    Видео

    Трансмиссия для скутера LMS (вид 1)

    Трансмиссия для скутера LMS (вид 2)

    Трансмиссия Real Scooter

    .